Response Value Y 都是连续型的
但是X分为discrete 和连续型的:
离散型的我们按照上面的处理方法就可以了,如果是X是连续型的话,我们通常会假设X符合高斯分布(正态分布),所以这个又叫做Gaussian Naive Bayes.
书上有一段话解释了为什么朴素贝叶斯那么强大的原因:
左边的图是individual population density estimation, 右边是加了posterior probabilities,所以看上去是平滑很多的。
Although the individual class density estimates may be biased, this bias might not hurt the posterior probabilities as much, esp near the decision regions. In fact the problem may be able to withstand considerable bias for the savings in variances such as naive assumption earns.引自 第四章