Casselman, L-groups - philosophy of cusp forms
- 章节名:Casselman, L-groups - philosophy of cusp forms
1. Recall Parabolic induction in representation of Lie groups. Consider ($G=SL(2,\mathbb R)$) and ($P( \mathbb R)=M(\mathbb R)\ltimes N(\mathbb R)$). Let ($\sigma$) be a representation of the levi-component ($M(\mathbb R)$). We inflate it to be a representation of ($P(\mathbb R)$) by letting ($N(\mathbb R)$) acting trivially, and normalized parabolic induced to be a representation of ($G(\mathbb R)$) via
($$ i_{M,P}^G \sigma=ind_{P}^G(\sigma\otimes\delta^{1/2}) $$)2. Let ($\Gamma$) be a principal congruence subgroup of ($SL(2,\mathbb Z)$). How to obtain an automorphic forms on ($G(\mathbb R)$) w.r.t. ($\Gamma$) from automomrphic forms on ($M(\R)$) via the above philosophy? 2-1. Assume we have an automorphic form on ($M(\mathbb R)$) with respect to ($M_\Gamma=M(\mathbb R)\cap \Gamma$), i.e. a function
($$ I_s:M_\Gamma\backslash M(\mathbb R)\rightarrow \mathbb C,\quad I_s\left(\begin{pmatrix} \pm y^{\frac{1}{2}}\\&\pm y^{-1/2}\end{pmatrix} \right)= |y|^s $$)2-2. We inflate it to be a function on ($P(\mathbb R)$) via letting ($N(\mathbb R)$) acts trivially, and obtains an automorphic forms on ($P$),
($$ I_s:P_\Gamma N(\mathbb R)\backslash P(\mathbb R)\rightarrow \mathbb C,\quad I_s\left(\begin{pmatrix} \pm y^{\frac{1}{2}}&x\\&\pm y^{-1/2}\end{pmatrix}\right)= |y|^s $$)2-3. We use the normalized induction to obtain a function on ($G(\mathbb R)$),
($$ \varphi_s: P_\Gamma N(\mathbb R)\backslash G(\mathbb R)\rightarrow\mathbb C,\quad \varphi_s\left(\begin{pmatrix}\pm y^{1/2}&x\\&\pm y^{-1/2}\end{pmatrix} g\right)=|y|^{s+\frac{1}{2}}\varphi_s(g). $$)Note that we also need the condition that ($\varphi_s$) is right ($K_\R$)-finite. 2-4. ($\varphi_s$) is defined on ($G(\mathbb R)$), but only invariant under the action of ($P_\Gamma$). To obtain an automorphic form on ($G(\mathbb Z)\backslash G(\mathbb R)$), we finally define
($$ \mathcal E(g,\varphi_s):=\sum_{\gamma\in P_\Gamma\backslash \Gamma}\varphi_s(\gamma g) $$)It is an automorphic forms on ($\Gamma\backslash G(\R)$).
side对本书的所有笔记 · · · · · ·
-
Casselman, L-groups - philosophy of cusp forms
-
Casselman, L-groups - philosophy of cusp forms, Adele version
Recall that we have ($$ \mathbb A^\times=\mathbb Q^\times(\mathbb R^\times_+ \prod_p \m...
-
A review of reductive groups
Let ($k$) be a number field, and ($\overline k\supset k_s\supset k$). Let ($G$) be a co...
说明 · · · · · ·
表示其中内容是对原文的摘抄