Preface
1 Matrices
1.1 The Basic Operations
1.2 Row Reduction
1.3 The Matrix Transpose
1.4 Deternunants
1.5 Permutations
1.6 Other Formulas for the Determinant
Exercises
2 Groups
2.1 Laws ofComposition
2.2 Groups and Subgroups
2.3 Subgroups of the Additive Group of Intege
2.4 Cyclic Groups
2.5 Homomorphisms
2.6 Isomorphisms
2.7 Equivalence Relations and Partitions
2.8 Cosets
2.9 Modular Arithmetic
2.10 The Correspondence Theorem
2.11 Ptoduct Groups
2.12 Quotient Groups
Exercises
3 VectorSpaces
3.1 SubspacesoflRn
3.2 Fields
3.3 Vector Spaces
3.4 Bases and Dimension
3.5 Computing with Bases
3.6 DirectSums
3.7 Infinite-DimensionalSpaces
Exercises
4 LinearOperators
4.1 The Dimension Formula
4.2 The Matrix of a Linear Transformation
4.3 Linear Operators
4.4 Eigenvectors
4.5 The Characteristic Polynomial
4.6 Triangular and DiagonaIForms
4.7 JordanForm
Exercises
5 Applications ofLinear Operators
5.1 OrthogonaIMatrices and Rotations
5.2 Using Continuity
5.3 Systems ofDifferentialEquations
5.4 The Matrix Exponential
Exercises
6 Symmetry
6.1 Symmetry ofPlane Figures
6.2 Isometries
6.3 Isometries ofthe Plane
6.4 Finite Groups of Orthogonal Operators on the Pl
6.5 Discrete Groups oflsometries
6.6 Plane Crystallographic Groups
6.7 Abstract Symmetry: Group Operations
6.8 The Operation on Cosets
6.9 The Counting Formula
6.10 Operations on Subsets
6.11 Permutation Representations
6.12 Finite Subgroups ofthe Rotation Group
Exercises
7 More Group Theory
7.1 Cayley's Theorem
7.2 The Class Equation
7.3 Groups
7.4 The Class Equation of the IcosahedraIGroup
7.5 Conjugationin the Symmetric Group
7.6 Normalizers
7.7 The Sylow Theorems
7.8 Groups ofOrder12
7.9 TheFreeGroup
7.10 Generators and Relations
7.11 The Todd-Coxeter Algorithm
Exercises
8 BilinearForms
8.1 BilinearForms
8.2 SymmetricForms
……
9 Linear Groups
10 Group Representations
11 Rings
12 Factoring
13 Quadratic Number Fields
14 Linear Algebra in a Ring
15 Fields
16 Galois theory
· · · · · · (
收起)
0 有用 凑热闹 2018-02-10
经典教材。
0 有用 濩泠枳 2016-04-30
伟大的经典啊!自s.lang以来最美之作。虽然并不十分深入
0 有用 [已注销] 2013-11-21
最近闲的时候拿过来翻一翻, 觉得如果在读Hungerford那本之前先看这本就好了.
4 有用 Grasie 2016-12-05
是很好的。有bourbaki式洁癖的可能不喜欢,不过谁说得准你不喜欢的原因是不是你最终做不好数学的理由呢。Artin写的再乱(你们认为那种),可没什么硬伤哦呵呵呵。//在亚马逊看见一些对此书的低级黑,而我只想说连这种maturity都没有您老不适合学数学……#谁反对Artin我们就砸烂他的狗头#
0 有用 秦淮听橹 2018-02-19
重学一下,万一要上表示论呢……
0 有用 专业脱粉 2019-09-17
太难了 数学🐶伤不起
0 有用 lnkvct 2019-09-05
刚读了两章,先来打个五星。 年度最佳阅读体验, 抽代太漂亮了。
0 有用 DÆVID 2019-08-05
非常适合我这种智商低的人,orz
0 有用 IJS 2019-02-03
这本书打通了脉络,非常值得一啃
0 有用 xxx 2018-12-28
补标。 UCSB的同学推荐的,他们大一的代数教材,打好基础再读会非常愉悦(基础还不够会很难过)。