The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.
1 有用 蒜子袋鼠 2023-04-05 10:58:40 江苏
只读了前两部分,后面的暂时应该不看了。就所读部分说一下观感:写的太好了,读这本书能感觉到作者有一种自己的体系,几何测度论的功底非常深厚。对于同一个定理,比Evans书上往往能用更少的语言叙述的更加清楚。许多概念是从几何概念推到测度框架下得来的,往往来的既在情理之中又在意料之外,实在是令人感叹先驱者的天才。 这本书的缺点就是小错误太多了,作者在自己主页放了erratum,不过这个erratum里面有... 只读了前两部分,后面的暂时应该不看了。就所读部分说一下观感:写的太好了,读这本书能感觉到作者有一种自己的体系,几何测度论的功底非常深厚。对于同一个定理,比Evans书上往往能用更少的语言叙述的更加清楚。许多概念是从几何概念推到测度框架下得来的,往往来的既在情理之中又在意料之外,实在是令人感叹先驱者的天才。 这本书的缺点就是小错误太多了,作者在自己主页放了erratum,不过这个erratum里面有一些也是错误的。。。但读者自己体会总是能纠正出来的。这也往往能感觉出来许多证明是作者自己给的,而不是照搬原始论文。 (展开)