作者:
William Fulton
/
Joe Harris
出版社: 世界图书出版公司
原作名: Representation Theory-A First Course
出版年: 2005-6
页数: 551
定价: 75.00元
装帧: 简裝本
丛书: Graduate Texts in Mathematics
ISBN: 9787506272681
出版社: 世界图书出版公司
原作名: Representation Theory-A First Course
出版年: 2005-6
页数: 551
定价: 75.00元
装帧: 简裝本
丛书: Graduate Texts in Mathematics
ISBN: 9787506272681
这本书的其他版本 · · · · · · ( 全部3 )
在哪儿借这本书 · · · · · ·
以下书单推荐 · · · · · · ( 全部 )
- Kogorou推荐的基础数学名著 (Kogorou)
- 数学研究生教材 GTM(世界图书出版公司) (cchhmm)
- 现代几何 (阅微草堂)
- Strongart没能打通的数学著作 (Strongart)
- 电子书collection (Kennan)
谁读这本书? · · · · · ·
二手市场
· · · · · ·
- 在豆瓣转让 有183人想读,手里有一本闲着?
订阅关于表示论基本教程的评论:
feed: rss 2.0
5 有用 阅微草堂 2014-10-29 19:18:24
通过修改具体的例子得到抽象模型的结构。弗罗贝尼乌斯互反定理:限制和诱导是一对伴随的函子,类比hom和张量是一对伴随函子。表示论的困难一在于其定义就是双对象也就是范畴或者是模,而不是过去的单个对象(或者是向量空间或者线性映射);其次,在于不同的代数结构之间的关系和转换,表示论和范畴,模自然关联:群表示论是非交换环上模的特例,有限群是半单代数的特例,而半单代数通过wedderburn定理可以同构于可除... 通过修改具体的例子得到抽象模型的结构。弗罗贝尼乌斯互反定理:限制和诱导是一对伴随的函子,类比hom和张量是一对伴随函子。表示论的困难一在于其定义就是双对象也就是范畴或者是模,而不是过去的单个对象(或者是向量空间或者线性映射);其次,在于不同的代数结构之间的关系和转换,表示论和范畴,模自然关联:群表示论是非交换环上模的特例,有限群是半单代数的特例,而半单代数通过wedderburn定理可以同构于可除代数(矩阵是其特例),通过修正矩阵代数中的Jordan正则形式可以得到李代数的抽象分解:直和+幂零(可解)代数。诺特发现代数这个简化的环结构,用群代数的模等价于有限群表示。群的正规表示就是把群代数看做自身的左模 不可约表示 就是群代数模是单的。杨氏表 是构造对称群的不可约表示的显示基底 (展开)
0 有用 豆友3551242 2010-01-23 12:30:06
更適合初學者
0 有用 survivor 2014-01-14 22:29:52
让newleft帮我把这本书带到美国真是太明智了
0 有用 online 2022-04-18 22:10:41
做参考吧
0 有用 sc* 2022-03-31 01:28:07
期末考前不得不看的,Joe Harris我的噩梦。他的笔法不像其他作者那样定理证明整洁有序,而是如堵不住的流水和剪不断的棉线一样,缠缠绕绕缕缕不清。看不懂,习题做不动,烦。