作者:
阿莫恩 (Herbert Amann)
出版社: 世界图书出版公司
原作名: Analysis I
出版年: 2012-9-1
页数: 426
定价: 89.00元
装帧: 平装
ISBN: 9787510048005
出版社: 世界图书出版公司
原作名: Analysis I
出版年: 2012-9-1
页数: 426
定价: 89.00元
装帧: 平装
ISBN: 9787510048005
豆瓣评分
内容简介 · · · · · ·
《分析(第1卷)(英文)》内容简介:This reprint has been authorized by Springer Science & Busincss Media for distribution in China Mainland only and not for export therefrom.
作者简介 · · · · · ·
Institut für Mathematik, Universität Zürich, Zürich
Herbert Amann
Institut für Angewandte Mathematik, Universität Hannover, Hannover
Joachim Escher
目录 · · · · · ·
Preface
Chapter Ⅰ Foundations
1 Fundamentals of Logic
2 Sets
Elementary Facts
The Power Set
· · · · · · (更多)
Chapter Ⅰ Foundations
1 Fundamentals of Logic
2 Sets
Elementary Facts
The Power Set
· · · · · · (更多)
Preface
Chapter Ⅰ Foundations
1 Fundamentals of Logic
2 Sets
Elementary Facts
The Power Set
Complement, Intersection and Union
Products
Families of Sets
3 Functions
Simple Examples
Composition of Functions
Commutative Diagrams
Injections, Surjections and Bijections
Inverse Functions
Set Valued Functions
4 Relations and Operations
Equivalence R;elations
Order Relations
Operations
5 The Natural Numbers
The Peano Axioms
The Arithmetic of Natural Numbers
The Division Algorithm
The Induction Principle
Recursive Definitions
6 Countab:ility
Permutations
Equinumerous Sets
Countable Sets
Infinite Products
7 Groups and Homomorphisms
Groups
Subgroups
Cosets
Homomorphisms
Isomorphisms
8 Rings, Fields and Polynomials
Rings
The Binomial Theorem
The Multinomial Theorem
Fields
Ordered Fields
Formal Power Series
Polynomials
Polynomial Functions
Division of Polynomials
Linear Factors
Polynomials in Several Indeterminates
9 The Rational Numbers
The Integers
The Rational Numbers
Rational Zeros of Polynomials
Square Roots
10 The Real Numbers
Order Completeness
Dedekind's Construction of the Real Numbers
The Natural Order on R
The Extended Number Line
A Characterization of Supremum and Infimum
The Archimedean Property
The Density of the Rational Numbers in R
nth Roots
The Density of the Irrational Numbers in R
Intervals
11 The Complex Numbers
Constructing the Complex Numbers
Elementary Properties
Computation with Complex Numbers
Balls in K
12 Vector Spaces, Affine Spaces and Algebras
Vector Spaces
Linear Functions
Vector Space Bases
Affine Spaces
Affine Functions
Polynomiallnterpolation
Algebras
Difference Operators and Summation Formulas
Newton Interpolation Polynomials
Chapter Ⅱ Convergence
1 Convergence of Sequences
Sequences
Metric Spaces
Cluster Points
Convergence
Bounded Sets
Uniqueness of the Limit
Subsequences
2 Real and Complex Sequences
Null Sequences
Elementary Rules
The Comparison Test
Complex Sequences
3 Normed Vector Spaces
Norms
Balls
Bounded Sets
Examples
The Space of Bounded Functions
Inner Product Spaces
The Cauchy-Schwarz Inequality
Euclidean Spaces
Equivalent Norms
Convergence in Product Spaces
4 Monotone Sequences
Bounded Monotone Sequences
Some Important Limits
5 Infinite Limits
Convergence to ±∞
The Limit Superior and Limit Inferior
The Bolzano-Weierstrass Theorem
6 Completeness
Cauchy Sequences
Banach Spaces
Cantor's Construction of the Real Numbers
7 Series
Convergence of Series
Harmonic and Geometric Series
Calculating with Series
Convergence Tests
Alternating Series
Decimal, Binary and Other Representations of Real Numbers
The Uncountability of R
8 Absolute Convergence
Majorant, Root and Ratio Tests
The Exponential Function
Rearrangements of Series
Double Series
Cauchy Products
9 Power Series
The Radius of Convergence
Addition and Multiplication of Power Series
The Uniqueness of Power Series Representations
Chapter Ⅲ Continuous Functions
1 Contimuty
Elementary Properties and Examples
Sequential Continuity
Addition and Multiplication of Continuous Functions
One-Sided Continuity
2 The Fndamentals of Topology
OpenSets
ClosedSets
The Closure of a Set
The Interior of a Set
The Boundary ofa Set
The Hausdorff Condition
Examples
A Characterization of Continuous Functions
Continuous Extensions
Relative Topology
General Topological Spaces
3 Compactness
Covers
A Characterization of Compact Sets
Sequential Compactness
Continuous Functions on Compact Spaces
The Extreme Value Theorem
Total Boundedness
Uniform Continuity
Compactness in General Topological Spaces
4 Connectivity
Definition and Basic Properties
Connectivity in R
The Generalized Intermediate Value Theorem
Path Connectivity
Connectivity in General Topological Spaces
5 Functions on R
Bolzano's Intermediate Value Theorem
Monotone Functions
Continuous Monotone Functions
6 The Exponential and Related Functions
Euler's Formula
The Real Exponential Function
The Logarithm and Power Functions
The Exponential Function on iR
The Definition of 7r and its Consequences
The Tangent and Cotangent Functions
The Complex Exponential Function
Polar Coordinates
Complex Logarithms
Complex Powers
A Further Representation of the Exponential Function
……
Chapter Ⅳ Differentiation in One Variable
Chapter Ⅴ Sequences of Functions
Appendix Introduction to Mathematical Logic
Bibliography
Index
· · · · · · (收起)
Chapter Ⅰ Foundations
1 Fundamentals of Logic
2 Sets
Elementary Facts
The Power Set
Complement, Intersection and Union
Products
Families of Sets
3 Functions
Simple Examples
Composition of Functions
Commutative Diagrams
Injections, Surjections and Bijections
Inverse Functions
Set Valued Functions
4 Relations and Operations
Equivalence R;elations
Order Relations
Operations
5 The Natural Numbers
The Peano Axioms
The Arithmetic of Natural Numbers
The Division Algorithm
The Induction Principle
Recursive Definitions
6 Countab:ility
Permutations
Equinumerous Sets
Countable Sets
Infinite Products
7 Groups and Homomorphisms
Groups
Subgroups
Cosets
Homomorphisms
Isomorphisms
8 Rings, Fields and Polynomials
Rings
The Binomial Theorem
The Multinomial Theorem
Fields
Ordered Fields
Formal Power Series
Polynomials
Polynomial Functions
Division of Polynomials
Linear Factors
Polynomials in Several Indeterminates
9 The Rational Numbers
The Integers
The Rational Numbers
Rational Zeros of Polynomials
Square Roots
10 The Real Numbers
Order Completeness
Dedekind's Construction of the Real Numbers
The Natural Order on R
The Extended Number Line
A Characterization of Supremum and Infimum
The Archimedean Property
The Density of the Rational Numbers in R
nth Roots
The Density of the Irrational Numbers in R
Intervals
11 The Complex Numbers
Constructing the Complex Numbers
Elementary Properties
Computation with Complex Numbers
Balls in K
12 Vector Spaces, Affine Spaces and Algebras
Vector Spaces
Linear Functions
Vector Space Bases
Affine Spaces
Affine Functions
Polynomiallnterpolation
Algebras
Difference Operators and Summation Formulas
Newton Interpolation Polynomials
Chapter Ⅱ Convergence
1 Convergence of Sequences
Sequences
Metric Spaces
Cluster Points
Convergence
Bounded Sets
Uniqueness of the Limit
Subsequences
2 Real and Complex Sequences
Null Sequences
Elementary Rules
The Comparison Test
Complex Sequences
3 Normed Vector Spaces
Norms
Balls
Bounded Sets
Examples
The Space of Bounded Functions
Inner Product Spaces
The Cauchy-Schwarz Inequality
Euclidean Spaces
Equivalent Norms
Convergence in Product Spaces
4 Monotone Sequences
Bounded Monotone Sequences
Some Important Limits
5 Infinite Limits
Convergence to ±∞
The Limit Superior and Limit Inferior
The Bolzano-Weierstrass Theorem
6 Completeness
Cauchy Sequences
Banach Spaces
Cantor's Construction of the Real Numbers
7 Series
Convergence of Series
Harmonic and Geometric Series
Calculating with Series
Convergence Tests
Alternating Series
Decimal, Binary and Other Representations of Real Numbers
The Uncountability of R
8 Absolute Convergence
Majorant, Root and Ratio Tests
The Exponential Function
Rearrangements of Series
Double Series
Cauchy Products
9 Power Series
The Radius of Convergence
Addition and Multiplication of Power Series
The Uniqueness of Power Series Representations
Chapter Ⅲ Continuous Functions
1 Contimuty
Elementary Properties and Examples
Sequential Continuity
Addition and Multiplication of Continuous Functions
One-Sided Continuity
2 The Fndamentals of Topology
OpenSets
ClosedSets
The Closure of a Set
The Interior of a Set
The Boundary ofa Set
The Hausdorff Condition
Examples
A Characterization of Continuous Functions
Continuous Extensions
Relative Topology
General Topological Spaces
3 Compactness
Covers
A Characterization of Compact Sets
Sequential Compactness
Continuous Functions on Compact Spaces
The Extreme Value Theorem
Total Boundedness
Uniform Continuity
Compactness in General Topological Spaces
4 Connectivity
Definition and Basic Properties
Connectivity in R
The Generalized Intermediate Value Theorem
Path Connectivity
Connectivity in General Topological Spaces
5 Functions on R
Bolzano's Intermediate Value Theorem
Monotone Functions
Continuous Monotone Functions
6 The Exponential and Related Functions
Euler's Formula
The Real Exponential Function
The Logarithm and Power Functions
The Exponential Function on iR
The Definition of 7r and its Consequences
The Tangent and Cotangent Functions
The Complex Exponential Function
Polar Coordinates
Complex Logarithms
Complex Powers
A Further Representation of the Exponential Function
……
Chapter Ⅳ Differentiation in One Variable
Chapter Ⅴ Sequences of Functions
Appendix Introduction to Mathematical Logic
Bibliography
Index
· · · · · · (收起)
喜欢读"分析(第1卷)"的人也喜欢 · · · · · ·
分析(第1卷)的书评 · · · · · · ( 全部 4 条 )

据说是德语国家目前最好的一本分析教材
Amann和Escher的这部教材在德语国家非常有名。感觉有Bourbaki的风格,全书非常严谨,一上来就把要用的其他基础知识,比如相关的代数等知识罗列了。到了第三册已是完全处理流形,Lebesgue积分等内容了。 这部书与国内的教材比起来显然要深要难很多,不过似乎德国法国的数学教育...
(展开)


摘两段国内外网友对此书的评价
这篇书评可能有关键情节透露
我最近在读这本书,写过书评,把主要内容从我的网站摘到豆瓣上来。感兴趣可以看原文链接: https://panqiincs.me/2022/02/18/attempt-amann-analysis/ 知乎上有网友如此评论此书(见: 哪些数学书让你相见恨晚? ): 至少学完测度与积分部分,本科的实分析可以不用学了,复分... (展开)> 更多书评 4篇
论坛 · · · · · ·
在这本书的论坛里发言这本书的其他版本 · · · · · · ( 全部4 )
-
Birkhäuser (2005)9.8分 73人读过
-
Birkhäuser Basel (2006)暂无评分 4人读过
-
未知出版社暂无评分
在哪儿借这本书 · · · · · ·
以下书单推荐 · · · · · · ( 全部 )
- 数学教材推荐 (online)
- 数学书 (爱看书的鉴猫咪)
- D2.数学/计算机科学 (衍)
- 数学 (yingwh2)
- 逻辑学与数学哲学相关 (却之)
谁读这本书? · · · · · ·
二手市场
· · · · · ·
- 在豆瓣转让 有95人想读,手里有一本闲着?
订阅关于分析(第1卷)的评论:
feed: rss 2.0
4 有用 蒜子袋鼠 2021-06-10 10:34:08
其实定位比较尴尬。用作入门书既难也繁,还容易迷失自我。用作复习书,太啰嗦。例子其实很多,proof也很详细,还有许许多多自己搞的符号来说明严谨性。。但你又不能说这书写的不好。
3 有用 online 2022-03-06 05:07:54
观点很高的一套教材,且逻辑上是自洽,理论上可以零基础开始读,不过当时有rudin和卓里奇基础还是看了三个月,内容确实有点多,习题量也够