Introducing deep learning: why you should learn it
Fundamental concepts: how do machines learn?
Introduction to neural prediction: forward propagation
Introduction to neural learning: gradient descent
Learning multiple weights at a time: generalizing gradient descent
Building your first deep neural network: introduction to backpropagation
· · · · · ·
(
更多)
Introducing deep learning: why you should learn it
Fundamental concepts: how do machines learn?
Introduction to neural prediction: forward propagation
Introduction to neural learning: gradient descent
Learning multiple weights at a time: generalizing gradient descent
Building your first deep neural network: introduction to backpropagation
How to picture neural networks: in your head and on paper
Learning signal and ignoring noise:introduction to regularization and batching
Modeling probabilities and nonlinearities: activation functions
Neural learning about edges and corners: intro to convolutional neural networks
Neural networks that understand language: king - man + woman == ?
Neural networks that write like Shakespeare: recurrent layers for variable-length data
Introducing automatic optimization: let's build a deep learning framework
Learning to write like Shakespeare: long short-term memory
Deep learning on unseen data: introducing federated learning
Where to go from here: a brief guide
· · · · · · (
收起)
0 有用 llak 2020-02-06 15:09:39
No math,觉得非常友好通俗,有记忆点。作者还分享了学习心得,是通用的。虽然说起来容易做起来难。讲解问题的逐步深入。还讲了framework. 仰慕一下作者的学习能力和才思
0 有用 omom 2020-03-29 22:01:01
小白硬啃了一个月看了个大概,很有收获!顺带的案例还在慢慢学习,希望能更进一步!
0 有用 小茉莉要勇敢呀 2024-05-07 10:32:46 美国
前面讲得很清楚,后面条理有点乱,建议不懂的名词直接搜专门的讲解视频
0 有用 豆友199285186 2021-10-20 12:24:32
挺好的书,前十章是基础,从第十一章开始,难度陡然增加。我建议所有的初学者都应该把里面的代码都学会了,自己学习写个框架,然后自己操作,再去学习类似于pytorch,keras等框架。
2 有用 Hephaestus 2019-02-25 14:45:00
适合入门的一本书