作者:
賈壯
出版社: 深智數位股份有限公司
副标题: 影像畫質演算法及深層視覺技術
出版年: 2024-11
页数: 480
定价: NT$980
装帧: 平装
ISBN: 9786267569221
出版社: 深智數位股份有限公司
副标题: 影像畫質演算法及深層視覺技術
出版年: 2024-11
页数: 480
定价: NT$980
装帧: 平装
ISBN: 9786267569221
豆瓣评分
AI圖片增強的创作者
· · · · · ·
-
贾壮 作者
目录 · · · · · ·
第1章 畫質演算法與底層視覺概述
1.1 畫質演算法的主要任務
1.1.1 畫質演算法定義及其主要類別
1.1.2 畫質問題的核心:退化
1.2 基於深度學習的底層視覺技術
1.2.1 深度學習與神經網路
· · · · · · (更多)
1.1 畫質演算法的主要任務
1.1.1 畫質演算法定義及其主要類別
1.1.2 畫質問題的核心:退化
1.2 基於深度學習的底層視覺技術
1.2.1 深度學習與神經網路
· · · · · · (更多)
第1章 畫質演算法與底層視覺概述
1.1 畫質演算法的主要任務
1.1.1 畫質演算法定義及其主要類別
1.1.2 畫質問題的核心:退化
1.2 基於深度學習的底層視覺技術
1.2.1 深度學習與神經網路
1.2.2 底層視覺任務的特點
第2章 畫質處理的基礎知識
2.1 光照與成像
2.1.1 視覺與光學成像
2.1.2 Bayer陣列與去馬賽克
2.1.3 相機影像訊號處理的基本流程
2.2 色彩與顏色空間
2.2.1 人眼色覺與色度圖
2.2.2 常見的顏色空間
2.3 影像的影調調整方法
2.3.1 長條圖與對比度
2.3.2 對比度拉伸與長條圖均衡
2.3.3 對比度增強演算法的改進策略
2.4 影像常見的空間操作
2.4.1 基本影像變換:仿射變換與透視變換
2.4.2 光流與幀間對齊
2.5 影像的頻域分析與影像金字塔
2.5.1 傅立葉轉換與頻域分析
2.5.2 自然影像的頻域統計特性
2.5.3 影像金字塔:高斯金字塔與拉普拉斯金字塔
第3章 影像與視訊降噪演算法
3.1 雜訊的來源與數學模型
3.1.1 影像雜訊的物理來源
3.1.2 雜訊的數學模型
3.2 降噪演算法的困難與策略
3.2.1 降噪演算法的困難
3.2.2 盲降噪與非盲降噪
3.2.3 高斯降噪與真實雜訊降噪
3.2.4 降噪演算法的評價指標
3.3 傳統降噪演算法
3.3.1 空域濾波:平均值、高斯與中值濾波器
3.3.2 非局部平均值演算法
3.3.3 小波變換降噪演算法
3.3.4 雙邊濾波與導向濾波
3.3.5 BM3D濾波演算法
3.4 深度學習降噪演算法
3.4.1 深度殘差降噪網路DnCNN和FFDNet
3.4.2 雜訊估計網路降噪:CBDNet
3.4.3 小波變換與神經網路的結合:MWCNN
3.4.4 視訊降噪:DVDNet和FastDVDNet
3.4.5 基於Transformer的降噪方法:IPT與SwinIR
3.4.6 自監督降噪演算法:Noise2Noise、Noise2Void與DIP
3.4.7 Raw域降噪策略與演算法:Unprocess與CycleISP
第4章 影像與視訊超解析度
4.1 超解析度任務概述
4.1.1 解析度與超解析度任務
4.1.2 超解析度的任務設定與特點
4.1.3 超解析度的評價指標
4.2 超解析度的傳統演算法
4.2.1 上採樣插值演算法與影像銳化處理
4.2.2 基於自相似性的超解析度
4.2.3 基於稀疏編碼的超解析度
4.3 經典深度學習超解析度演算法
4.3.1 神經網路超解析度開端:SRCNN和FSRCNN
4.3.2 無參的高效上採樣:ESPCN
4.3.3 無BN層的殘差網路:EDSR
4.3.4 殘差稠密網路
4.3.5 針對視覺畫質的最佳化:SRGAN與ESRGAN
4.3.6 注意力機制超解析度網路:RCAN
4.3.7 盲超解析度中的退化估計:ZSSR與KernelGAN
4.4 真實世界的超解析度模型
4.4.1 複雜退化模擬:BSRGAN與Real-ESRGAN
4.4.2 影像域遷移:CycleGAN類網路與無監督超解析度
4.4.3 擴散模型的真實世界超解析度:StableSR
4.5 超解析度模型的輕量化
4.5.1 多分支資訊蒸餾:IMDN與RFDN
4.5.2 重參數化策略:ECBSR
4.5.3 消除特徵容錯:GhostSR
4.5.4 單層極輕量化模型:edgeSR
4.6 視訊超解析度模型簡介
4.6.1 視訊超解析度的特點
4.6.2 BasicVSR、BasicVSR++與RealBasicVSR
4.7 超解析度模型的最佳化策略
4.7.1 基於分頻分區域處理的模型設計
4.7.2 針對細節紋理的恢復策略
4.7.3 可控可解釋的畫質恢復與超解析度
第5章 影像去霧
5.1 影像去霧任務概述
5.1.1 有霧影像的形成與影響
5.1.2 有霧影像的退化:大氣散射模型
5.1.3 去霧演算法的主要想法
5.2 基於物理模型的去霧演算法
5.2.1 基於反照係數分解的Fattal去霧演算法
5.2.2 暗通道先驗去霧演算法
5.2.3 顏色衰減先驗去霧演算法
5.3 深度學習去霧演算法
5.3.1 點對點的透射圖估計:DehazeNet
5.3.2 輕量級去霧網路模型:AOD-Net
5.3.3 基於GAN的去霧模型:Dehaze cGAN和Cycle-Dehaze
5.3.4 金字塔稠密連接網路:DCPDN
5.3.5 特徵融合注意力去霧模型:FFA-Net
第6章 影像高動態範圍
6.1 影像HDR任務簡介
6.1.1 動態範圍的概念
6.1.2 HDR任務分類與關鍵問題
6.2 傳統HDR相關演算法
6.2.1 多曝融合演算法
6.2.2 局部拉普拉斯濾波演算法
6.2.3 Reinhard攝影色調重建演算法
6.2.4 快速雙邊濾波色調映射演算法
6.3 基於神經網路模型的HDR演算法
6.3.1 網路模型的訓練目標:MEF-SSIM
6.3.2 點對點多曝融合演算法:DeepFuse
6.3.3 多曝權重的網路計算:MEF-Net
6.3.4 注意力機制HDR網路:AHDRNet
6.3.5 單圖動態範圍擴充:ExpandNet
第7章 影像合成與影像和諧化
7.1 影像合成任務簡介
7.2 經典影像合成演算法
7.2.1 alpha通道混合演算法
7.2.2 多尺度融合:拉普拉斯金字塔融合
7.2.3 梯度域的無縫融合:卜松融合
7.3 深度學習影像合成與影像和諧化
7.3.1 空間分離注意力:S2AM模型
7.3.2 域驗證的和諧化:DoveNet
7.3.3 背景引導的域轉換:BargainNet
7.3.4 前景到背景的風格遷移:RainNet
第8章 影像增強與影像修飾
8.1 影像增強任務概述
8.2 傳統低光增強演算法
8.2.1 基於反色去霧的低光增強演算法
8.2.2 多尺度Retinex演算法
8.3 神經網路模型的增強與顏色調整
8.3.1 Retinex理論的模型實現:RetinexNet
8.3.2 雙邊即時增強演算法:HDRNet
8.3.3 無參考圖的低光增強:Zero-DCE
8.3.4 可控的修圖模型:CSRNet
8.3.5 3D LUT類模型:影像自我調整3D LUT和NILUT
8.3.6 色域擴充:GamutNet和GamutMLP
· · · · · · (收起)
1.1 畫質演算法的主要任務
1.1.1 畫質演算法定義及其主要類別
1.1.2 畫質問題的核心:退化
1.2 基於深度學習的底層視覺技術
1.2.1 深度學習與神經網路
1.2.2 底層視覺任務的特點
第2章 畫質處理的基礎知識
2.1 光照與成像
2.1.1 視覺與光學成像
2.1.2 Bayer陣列與去馬賽克
2.1.3 相機影像訊號處理的基本流程
2.2 色彩與顏色空間
2.2.1 人眼色覺與色度圖
2.2.2 常見的顏色空間
2.3 影像的影調調整方法
2.3.1 長條圖與對比度
2.3.2 對比度拉伸與長條圖均衡
2.3.3 對比度增強演算法的改進策略
2.4 影像常見的空間操作
2.4.1 基本影像變換:仿射變換與透視變換
2.4.2 光流與幀間對齊
2.5 影像的頻域分析與影像金字塔
2.5.1 傅立葉轉換與頻域分析
2.5.2 自然影像的頻域統計特性
2.5.3 影像金字塔:高斯金字塔與拉普拉斯金字塔
第3章 影像與視訊降噪演算法
3.1 雜訊的來源與數學模型
3.1.1 影像雜訊的物理來源
3.1.2 雜訊的數學模型
3.2 降噪演算法的困難與策略
3.2.1 降噪演算法的困難
3.2.2 盲降噪與非盲降噪
3.2.3 高斯降噪與真實雜訊降噪
3.2.4 降噪演算法的評價指標
3.3 傳統降噪演算法
3.3.1 空域濾波:平均值、高斯與中值濾波器
3.3.2 非局部平均值演算法
3.3.3 小波變換降噪演算法
3.3.4 雙邊濾波與導向濾波
3.3.5 BM3D濾波演算法
3.4 深度學習降噪演算法
3.4.1 深度殘差降噪網路DnCNN和FFDNet
3.4.2 雜訊估計網路降噪:CBDNet
3.4.3 小波變換與神經網路的結合:MWCNN
3.4.4 視訊降噪:DVDNet和FastDVDNet
3.4.5 基於Transformer的降噪方法:IPT與SwinIR
3.4.6 自監督降噪演算法:Noise2Noise、Noise2Void與DIP
3.4.7 Raw域降噪策略與演算法:Unprocess與CycleISP
第4章 影像與視訊超解析度
4.1 超解析度任務概述
4.1.1 解析度與超解析度任務
4.1.2 超解析度的任務設定與特點
4.1.3 超解析度的評價指標
4.2 超解析度的傳統演算法
4.2.1 上採樣插值演算法與影像銳化處理
4.2.2 基於自相似性的超解析度
4.2.3 基於稀疏編碼的超解析度
4.3 經典深度學習超解析度演算法
4.3.1 神經網路超解析度開端:SRCNN和FSRCNN
4.3.2 無參的高效上採樣:ESPCN
4.3.3 無BN層的殘差網路:EDSR
4.3.4 殘差稠密網路
4.3.5 針對視覺畫質的最佳化:SRGAN與ESRGAN
4.3.6 注意力機制超解析度網路:RCAN
4.3.7 盲超解析度中的退化估計:ZSSR與KernelGAN
4.4 真實世界的超解析度模型
4.4.1 複雜退化模擬:BSRGAN與Real-ESRGAN
4.4.2 影像域遷移:CycleGAN類網路與無監督超解析度
4.4.3 擴散模型的真實世界超解析度:StableSR
4.5 超解析度模型的輕量化
4.5.1 多分支資訊蒸餾:IMDN與RFDN
4.5.2 重參數化策略:ECBSR
4.5.3 消除特徵容錯:GhostSR
4.5.4 單層極輕量化模型:edgeSR
4.6 視訊超解析度模型簡介
4.6.1 視訊超解析度的特點
4.6.2 BasicVSR、BasicVSR++與RealBasicVSR
4.7 超解析度模型的最佳化策略
4.7.1 基於分頻分區域處理的模型設計
4.7.2 針對細節紋理的恢復策略
4.7.3 可控可解釋的畫質恢復與超解析度
第5章 影像去霧
5.1 影像去霧任務概述
5.1.1 有霧影像的形成與影響
5.1.2 有霧影像的退化:大氣散射模型
5.1.3 去霧演算法的主要想法
5.2 基於物理模型的去霧演算法
5.2.1 基於反照係數分解的Fattal去霧演算法
5.2.2 暗通道先驗去霧演算法
5.2.3 顏色衰減先驗去霧演算法
5.3 深度學習去霧演算法
5.3.1 點對點的透射圖估計:DehazeNet
5.3.2 輕量級去霧網路模型:AOD-Net
5.3.3 基於GAN的去霧模型:Dehaze cGAN和Cycle-Dehaze
5.3.4 金字塔稠密連接網路:DCPDN
5.3.5 特徵融合注意力去霧模型:FFA-Net
第6章 影像高動態範圍
6.1 影像HDR任務簡介
6.1.1 動態範圍的概念
6.1.2 HDR任務分類與關鍵問題
6.2 傳統HDR相關演算法
6.2.1 多曝融合演算法
6.2.2 局部拉普拉斯濾波演算法
6.2.3 Reinhard攝影色調重建演算法
6.2.4 快速雙邊濾波色調映射演算法
6.3 基於神經網路模型的HDR演算法
6.3.1 網路模型的訓練目標:MEF-SSIM
6.3.2 點對點多曝融合演算法:DeepFuse
6.3.3 多曝權重的網路計算:MEF-Net
6.3.4 注意力機制HDR網路:AHDRNet
6.3.5 單圖動態範圍擴充:ExpandNet
第7章 影像合成與影像和諧化
7.1 影像合成任務簡介
7.2 經典影像合成演算法
7.2.1 alpha通道混合演算法
7.2.2 多尺度融合:拉普拉斯金字塔融合
7.2.3 梯度域的無縫融合:卜松融合
7.3 深度學習影像合成與影像和諧化
7.3.1 空間分離注意力:S2AM模型
7.3.2 域驗證的和諧化:DoveNet
7.3.3 背景引導的域轉換:BargainNet
7.3.4 前景到背景的風格遷移:RainNet
第8章 影像增強與影像修飾
8.1 影像增強任務概述
8.2 傳統低光增強演算法
8.2.1 基於反色去霧的低光增強演算法
8.2.2 多尺度Retinex演算法
8.3 神經網路模型的增強與顏色調整
8.3.1 Retinex理論的模型實現:RetinexNet
8.3.2 雙邊即時增強演算法:HDRNet
8.3.3 無參考圖的低光增強:Zero-DCE
8.3.4 可控的修圖模型:CSRNet
8.3.5 3D LUT類模型:影像自我調整3D LUT和NILUT
8.3.6 色域擴充:GamutNet和GamutMLP
· · · · · · (收起)
原文摘录 · · · · · ·
-
可以看出,通过双线性插值可以将输入的Bayer阵列图像恢复成RGB三通道彩色图像。但是在结果中也可以看出,简单的双线性插值会使边缘位置出现锯齿状的伪彩(Artifact,统称为由于人为处理造成和引入的各种干扰),通常称为拉链效应(Zipper Effect)。它的成因主要是三种颜色像素位置分布不对称。去马赛克结果中的拉链效应如图216所示,对于一个交界处的边缘,假设左边值为0,右边值为128,可以看出,通过这种插值方法得到的RGB彩色图中的G通道明显出现了拉链状伪影。沿着边缘的像素在插值过程中,由于受到交界线两侧差异较大的像素值的影响,插值后得到的G像素值与原本G像素位置的G像素值产生了差距,由于G是交替排列的,这种差距也就表现为有规律的模式。 在实际应用中,自然是不希望有伪影产生的。由于已经分析到这种效应的产生在于边缘处不能直接按照平坦区域的方式进行插值,因此,如果可以沿着边缘方向,只用和该点像素属于一侧的已知像素进行插值,那么就可以在一定程度上避免这种拉链效应。这种方案利用的是像素点之间的空间相关性(Spatial Correlation),并针对边缘这种不满足空间相关性的情况进行了优化。 (查看原文) —— 引自章节:2.1.2 Bayer阵列与去马赛克 15 -
尽管不同图像千差万别,但是研究表明,对于自然图像(Natural Image)来说,它们的振幅谱是有一定规律的。图像的空间频率(Spatial Frequency)与平均振幅(Average Amplitude)之间存在着倒数幂律(Reciprocal Power Law),即平均振幅正比于空间频率的-a次方,写成数学形式如下:A=kf-a 式中,A和∫分别表示振幅与频率:k和α是系数。这个规律说明了以下几点信息:首先,不同的自然图像,除了比较特殊的情况,通常具有类似的细节程度。其次,自然图像中含有较多的低频分量,也就是说自然图像的主要取值基本都是渐变的,而细节则是在这些渐变的基础上增加的内容信息,这些高频内容的含量相比于渐变的低频从能量上来说更少。可以简单地验证一下这个规律,对上面等式的两边取对数,可以得到: log(A)=log(k)-alog(f) 也就是说,对不同图像的振幅和频率作双对数图,可以近似得到一个线性关系,其斜率为-。取若干自然图像,按照上面的方式作图,不同图像的振幅与频率双对数(log-log)图如图253所示。可以看到,不同图像虽然内容差异较大,但是其在频谱分布上均遵循倒数幂律。 (查看原文) —— 引自章节:2.5.2 自然图像的频域统计特性 60
AI圖片增強的书评 · · · · · · ( 全部 2 条 )

解锁图像处理和low-level vision技术的前沿与实践
《图像画质与底层视觉任务》这本书汇集了当今图像处理领域最前沿的知识和技术,适合深度学习和计算机视觉领域的专业人士以及学术研究者。从去噪、超分辨率到去雾和高动态范围,每一章都深入探讨了底层视觉任务的基础理论及其对应的经典和现代算法。 书中详细分析了不同任务下图...
(展开)

很适合做视觉的孩子学习
写的很清楚,算法和应用都解释的很明白,孩子很喜欢,i人宝宝也能用!该书作者通过系统的讲解,结合丰富的实例和代码,帮助读者理解图像增强、降噪、边缘检测等关键算法的实现和优化过程。书中不仅涵盖了传统的图像处理方法,还深入探讨了深度学习在图像画质提升中的应用,为读...
(展开)
> 更多书评 2篇
论坛 · · · · · ·
在这本书的论坛里发言这本书的其他版本 · · · · · · ( 全部2 )
-
电子工业出版社 (2024)暂无评分 5人读过
以下书单推荐 · · · · · · ( 全部 )
- 算法指月录 (心机之蛙)
谁读这本书? · · · · · ·
二手市场
· · · · · ·
- 在豆瓣转让 有1人想读,手里有一本闲着?
订阅关于AI圖片增強的评论:
feed: rss 2.0
还没人写过短评呢