流体动力学中的拓扑方法 短评

  • 1 阅微草堂 2014-10-10

    流体力学在微分同胚和刚体SO3群之间,内对称,建立在李群的黎曼度量之上 Arnold在无穷维Lie群的Riemann几何方面的工作对于 流体动力学的革命性影响几乎与他在小分母方面的工作在经 典力学中产生的影响一样.特别是,Arnold在 Annales de L’Institute Fourier》的开创性论文 惜鉴了他所观察到的不 可压缩流体流可以解释为保体积微分同胚群上右不变度量的 测地线.从技术上讲,该论文的目的是为了表明,标准的2一 环面上的大多数保面积微分同胚的截面曲率是负的,因此该 V.Arnold.1968年 群的测地线通常成指数型发散.时不时地,这个结果作为“长期天气预报不可能性的数学证明”而成为新闻.更重要的是,这个工作把伴随轨道上的Euler(欧

  • 第一页
  • 前一页
  • 后一页