出版社: 中信出版社
副标题: 数学杀伤性武器的威胁
原作名: WEAPONS OF MATH DESTRUCTION: How Big Data Increases Inequality and Threatens Democracy
译者: 马青玲
出版年: 2018-9-1
页数: 320
定价: 69.00元
装帧: 精装
ISBN: 9787508692067
内容简介 · · · · · ·
数据科学家凯西•奥尼尔认为,我们应该警惕不断渗透和深入我们生活的数学模型——它们的存在,很有可能威胁到我们的社会结构。
我们生活在一个依赖“算法”的时代,它对我们生活的影响越来越大,我们去哪里上学,我是不是应该贷款买车,我们应该花多少钱来买健康保险,这些都不是由人来决定的,而是由大数据模型来决定的。从理论上来说,这一模型应该让社会更加公平,每一个人的衡量标准都是一样的,偏见是不存在的。
但是,正如凯西•奥尼尔书里所揭示的那样,事实并非如此。我们今天所使用的这些数学模型是不透明的、未经调节的、极富争议的,有的甚至还是错误的。最糟糕的是,数学模型和大数据算法加剧了偏见与不公。例如,一个贫困学生想申请贷款交付学费,但是银行大数据算法根据他居住地的邮政编码判断将钱带给他存在风险,因此,拒绝给他提供贷款。他因此失去了受教育的机会,而这个机会可能帮助他摆脱贫困。...
数据科学家凯西•奥尼尔认为,我们应该警惕不断渗透和深入我们生活的数学模型——它们的存在,很有可能威胁到我们的社会结构。
我们生活在一个依赖“算法”的时代,它对我们生活的影响越来越大,我们去哪里上学,我是不是应该贷款买车,我们应该花多少钱来买健康保险,这些都不是由人来决定的,而是由大数据模型来决定的。从理论上来说,这一模型应该让社会更加公平,每一个人的衡量标准都是一样的,偏见是不存在的。
但是,正如凯西•奥尼尔书里所揭示的那样,事实并非如此。我们今天所使用的这些数学模型是不透明的、未经调节的、极富争议的,有的甚至还是错误的。最糟糕的是,数学模型和大数据算法加剧了偏见与不公。例如,一个贫困学生想申请贷款交付学费,但是银行大数据算法根据他居住地的邮政编码判断将钱带给他存在风险,因此,拒绝给他提供贷款。他因此失去了受教育的机会,而这个机会可能帮助他摆脱贫困。大数据算法做的常常只是锦上添花的事儿,有时甚至是落井下石。
通过个案追踪,凯西•奥尼尔揭示了大数据是如何影响我们将来的,它不仅影响着个人,也影响着整个社会。这些数据评价着我们的老师、学生,筛选着我们的简历,审核着我们的贷款资格,衡量着员工的工作态度,监视着投票者,监控着我们的健康。
凯西•奥尼尔呼吁数据模型的创造者们要对算法负责,政策的制定者及执行者们在使用这一威力极大的“武器”前应该更加慎重。最后,作者指出,大数据几乎掌控着我们的生活,我们应该增加对它的了解。这本书相当的重要,它让我们有能力去问一些十分尖锐的问题,帮助我们了解事实的真相,提出需要改变的地方,探索更好的生活。
【编辑推荐】
案例丰富,内容兼具深度与话题性
未来20年,算法和大数据将席卷世界,接管我们的生活、社会和经济。我们生活中的很多方面都将落入自动化的数据分析之下。确保算法和大数据的公平性将是一项重大的任务,数据伦理的价值和意义将不断凸显出来。在作者看来,大数据犹如一个黑盒,规模、伤害和隐秘共存,她在书中引用了大量发生在美国当下的、基于大数据和算法的、改变个人生活的案例,并对影响这些城市生活经验的算法做了特别的观察和研究。作者认为,数据和算法的关系就像枪械和军火,数据没有价值观,是中立的,但来自人类行为的输入,难免隐含偏向,而算法创造的数据又对人类行为产生反作用,从而导致更多的不公。凯西在书中指出:算法模型一旦运转,执法行为就会增多,产生的新数据又会进一步证明加强执法的必要性。形象地说,就是哪里“前科”越多,哪里就越受算法“关照”,最终形成一个失真,甚至有害的回馈环路。这个观点也正是近来Facebook干预美国大选,国内很多专家学者热议“今日头条”推送模式的核心所在。
权威作者的深刻洞见
本书作者是哈佛大学的数学博士,研究方向是数论和代数几何,毕业之后在麻省理工学院执教,并在互联网公司做过很长时间的数据科学家,如今致力于教育和媒体行业的数据知识普及工作,因此,这并不是一本传统意义上唱衰大数据的书,相反,作者希望让更多的人通过了解大数据、了解算法,反思模型,以及通过政府和相关机构的合理监管,不断改善各类设计评价体系,让更多的人受益,维护社会的公平与民主。
【英文版获奖情况】
《纽约时报》(New York Times)年度书籍
《波士顿环球报》年度最佳图书
《连线》杂志年度必读书目之一
《财富》年度最受欢迎的书之一
《柯克斯评论》年度最佳作品
芝加哥公共图书馆年度最佳图书
《自然》网站年度最佳图书
《麻省理工科技评论》年度最佳科技图书
作者简介 · · · · · ·
凯西•奥尼尔(Cathy O'Neil)
数据科学家,mathbabe.org的博主。博士毕业于哈佛大学,主修数学专业。她曾在巴纳德学院任教,之后为私营企业服务,例如避险基金。她还在各类新型公司担任数据科学家,预测消费者购买与点击趋势。每周她都会出现在“财富记账”的播客上。
目录 · · · · · ·
第一章 盲点炸弹
不透明、规模化和毁灭性
第二章 操控与恐吓
弹震症患者的醒悟
第三章 恶意循环
排名模型的焦虑和杀伤性的对立面
第四章 数据经济
掠夺式广告的赢家
第五章 效率权衡与逻辑漏洞
大数据时代的正义
第六章 筛选
颅相学的偏见强化
第七章 反馈
辛普森悖论的噪声
第八章 间接损害
所有数据都是信用数据?
第九章 “一般人”公式
沉溺与歧视
第十章 正面的力量
锁定微目标的出发点
结束语
注释
索引
· · · · · · (收起)
喜欢读"算法霸权"的人也喜欢的电子书 · · · · · ·
算法霸权的书评 · · · · · · ( 全部 18 条 )
不公平的模型已经开始泛滥了
这篇书评可能有关键情节透露
《黑镜》第三季第一集的社会中,有一个评分体系。人们每时每刻都要对别人的行为进行打分,而评分是个人获取各种社会资源的凭证。工作、生活、身心健康无不依赖于它。剧情展示了生活在这种社会中的人的悲惨生活。 但现实中,已经有这种评分的类似物了。2016 年年底,支付宝依托... (展开)观点并不新颖,消遣可以看看
这篇书评可能有关键情节透露
先写结论:作者对数据模型做了很好的总结,但是观点并不新颖。举例过于冗余,后半部分有点像在冲字数。一些观点过于偏激,比如全盘否定数据模型的在社科领域的作用。 作者对数据模型有几个不错的总结,罗列如下:1. 数据模型擅长以低成本处理海量数据,2. 由于人们无法对模型进... (展开)自恋,自负,自私的,“神”
这篇书评可能有关键情节透露
现在的互联网世界,弥漫着一种“技术既正确”的气氛。高技术诚然引领了社会的经济增长,技术员也在这一波浪潮中赚了不少快钱。我没有要否定计算机技术的意思,但国内的氛围,似乎看不到对于技术的负面影响有什么怀疑。 这本书在国内出版的意义就在于此。 人类的技术正在做的,... (展开)> 更多书评 18篇
论坛 · · · · · ·
在这本书的论坛里发言这本书的其他版本 · · · · · · ( 全部5 )
-
Crown (2016)7.6分 179人读过
-
-
Broadway Books (2017)暂无评分 8人读过
-
Penguin (2017)暂无评分 1人读过
以下书单推荐 · · · · · · ( 全部 )
- 经管:定位/产品/组织/运营等2 (alenwg_cn)
- 黄书 (丝绒陨)
- 深度学习与人工智能 (lyb)
- 左其盛好书榜 (左其盛)
- 授权出版:非虚构 (英国安德鲁·纳伯格联合国际有限公司)
谁读这本书? · · · · · ·
二手市场
· · · · · ·
订阅关于算法霸权的评论:
feed: rss 2.0
2 有用 Labyrinth 2022-01-07 15:02:41
指出了问题但不解决问题的书在我看来简直就是耍流氓。抱怨社会体系不够完善需要写一本书吗?我知道了我的生活很大程度被算法决定了,又能怎样呢?哪来的绝对公平呢?高考也是不够公平的筛选方式,但你不找出更好的办法,只是抱怨有什么用?
0 有用 Izayoi Aki 4.0 2022-03-25 14:47:14
1、按李航《统计学习方法》的第一章,统计学习方法包含了三个要素:模型、策略和算法。个人感觉这本书其实讨论最少的其实就是算法:例如以学生成绩来评价老师的案例,根本错误就出在选取最优模型的策略上,这样算法几乎没有正确的可能。不止这本书的标题翻译问题,算法就是个大筐,什么都能往里装。 2、书本身就是面向大众的科普通俗读物,不过“选民扩音器”(voter megaphone)的案例从今天看这个真的太重要了... 1、按李航《统计学习方法》的第一章,统计学习方法包含了三个要素:模型、策略和算法。个人感觉这本书其实讨论最少的其实就是算法:例如以学生成绩来评价老师的案例,根本错误就出在选取最优模型的策略上,这样算法几乎没有正确的可能。不止这本书的标题翻译问题,算法就是个大筐,什么都能往里装。 2、书本身就是面向大众的科普通俗读物,不过“选民扩音器”(voter megaphone)的案例从今天看这个真的太重要了。 3、我甚至有一丝感觉,好模型和坏模型的界限其实不模糊,不涉及社会的才有可能是好模型,只要是涉及社会的模型都难免有不可预知的外部性。我们所能做的就是公开化和审查监督。 (展开)
0 有用 吕畅九 2020-11-23 08:12:28
@2020-11-23 08:12:28 @2020-12-20 15:16:24
0 有用 抽抽经会被虐 2018-11-13 00:12:16
How damage the WMD serves the world... #English
1 有用 柚儿圆 2022-03-09 23:15:57
科普闲聊的写法,内容和想法好过某些社会学的博论
0 有用 三把刀客 2024-10-14 17:18:47 四川
大数据这个词出来之前对于大数据的控诉。
0 有用 Marsha爱芝士 2024-09-17 14:25:20 北京
为了写读书报告,第一次看完一本书还去搜论文,看我能写出个什么玩意儿吧😥
0 有用 莉莉丝(Ojas) 2024-09-07 17:40:16 河南
大概读了读。一些是孽力回馈一些是纯粹被侮辱和损害的。那些推崇社达的支持剥削别人(站着说话不腰疼或得了便宜还卖乖的)上到高位就是为了踩别人头上的被回旋镖扎到属于孽力回馈。每每都被她们都乐观"惊"到。作者博士,目测收入和其它也各种不错,在做研究的同时,给三个儿子做饭的还是她(行文中提了一嘴)忙不过来的时候叫她妈过来帮忙。之前友邻发过欧美婚女就算收入比丈夫高在家务上仍然时长比丈夫长的数据
0 有用 Roma 2024-09-01 16:11:04 内蒙古
《拼凑真相》
0 有用 朝潮夕汐 2024-08-14 14:39:38 天津
critical algorithm studies开山意义的作品