作者:
郝兆宽
/
杨睿之
/
杨跃
出版社: 复旦大学出版社
副标题: 证明及其限度(第二版)
出版年: 2020-8
页数: 255
装帧: 平装
丛书: 逻辑与形而上学教科书系列
ISBN: 9787309145687
出版社: 复旦大学出版社
副标题: 证明及其限度(第二版)
出版年: 2020-8
页数: 255
装帧: 平装
丛书: 逻辑与形而上学教科书系列
ISBN: 9787309145687
内容简介 · · · · · ·
数理逻辑是一门非常成熟的学科
相比于其他教材
本书将逻辑与元数学联系在一起
更多地介绍语义部分和强调语法语义的统一
数理逻辑(第二版)的创作者
· · · · · ·
-
郝兆宽 作者
作者简介 · · · · · ·
郝兆宽:复旦大学哲学学院教授。主要研究方向为数学哲学、哥德尔思想。
杨睿之:复旦大学哲学学院副教授。主要研究方向为数理逻辑与数学哲学。
杨跃:新加坡国立大学数学系教授。主要研究方向为数理逻辑,尤其是递归论、皮亚诺算术模型。
目录 · · · · · ·
第二版序
引言:什么是数理逻辑?
第一章 预备知识
1.1 证明的必要性
1.2集合
1.3关系
1.4函数
1.5等价关系与划分
1.6序
1.7结构的例子
第二章 命题逻辑
2.1引言
2.2命 题逻辑的语言
2.3真值指派
2.4唯一可读性
2.5其他联词
2.6命题逻辑的一个推演系统
2.7命题逻辑的自然推演
2.8命题逻辑的可靠性和完全性定理
2.9模态逻辑简介
第三章 一阶逻辑的语言
3.1 一阶逻辑的语言的定义和例子
3.2自由出现和约束出现
第四章 形式证明
4.1一 阶逻辑的一个公理系统
4.2推理和元定 理
4.3其他元定理
4.4前束范式
4.5自然推演
第五章 一阶语言的结构和真值理论
5.1一阶语言的结构
5.2可定义性
5.3同态和同构
第六章 哥德尔完全性定理
6.1可靠性定理
6.2 完全性定理
6.3自然推演系统的可靠性和完全性
6.4紧致性定理及其应用
第七章 递归论的基本知识
7.1 原始递归函数
7.2递归函数
7.3图灵机
7.4图灵可计算函数与部分递归函数
7.5递归可枚举集
第八章简化版本的自然数模型
8.1工紧致性定理及其应用
8.2可判定的理论
8.3只含后继的自然数模型
8.4包含后继和序的自然数模型
8.5普莱斯伯格算术模型
第九章 哥德尔第一不完全性定理
9.1可表示性
9.2毛语法的算术化
9.3不动点引理和递归定理
9.4不可定义性、不完全性和不可判定性
第十章 哥德尔第二不完全性定理
10.1可证性条件
10.2第二可证性条件(D2)的证明
10.3 第三可证性条件(D3)的证明
10.4哥德尔第二不完全性定理
10.5自然的不 可判定语句
结束语
附录
哥德尔的生平
哥德尔的主要数学工作
参考文献
索引
· · · · · · (收起)
引言:什么是数理逻辑?
第一章 预备知识
1.1 证明的必要性
1.2集合
1.3关系
1.4函数
1.5等价关系与划分
1.6序
1.7结构的例子
第二章 命题逻辑
2.1引言
2.2命 题逻辑的语言
2.3真值指派
2.4唯一可读性
2.5其他联词
2.6命题逻辑的一个推演系统
2.7命题逻辑的自然推演
2.8命题逻辑的可靠性和完全性定理
2.9模态逻辑简介
第三章 一阶逻辑的语言
3.1 一阶逻辑的语言的定义和例子
3.2自由出现和约束出现
第四章 形式证明
4.1一 阶逻辑的一个公理系统
4.2推理和元定 理
4.3其他元定理
4.4前束范式
4.5自然推演
第五章 一阶语言的结构和真值理论
5.1一阶语言的结构
5.2可定义性
5.3同态和同构
第六章 哥德尔完全性定理
6.1可靠性定理
6.2 完全性定理
6.3自然推演系统的可靠性和完全性
6.4紧致性定理及其应用
第七章 递归论的基本知识
7.1 原始递归函数
7.2递归函数
7.3图灵机
7.4图灵可计算函数与部分递归函数
7.5递归可枚举集
第八章简化版本的自然数模型
8.1工紧致性定理及其应用
8.2可判定的理论
8.3只含后继的自然数模型
8.4包含后继和序的自然数模型
8.5普莱斯伯格算术模型
第九章 哥德尔第一不完全性定理
9.1可表示性
9.2毛语法的算术化
9.3不动点引理和递归定理
9.4不可定义性、不完全性和不可判定性
第十章 哥德尔第二不完全性定理
10.1可证性条件
10.2第二可证性条件(D2)的证明
10.3 第三可证性条件(D3)的证明
10.4哥德尔第二不完全性定理
10.5自然的不 可判定语句
结束语
附录
哥德尔的生平
哥德尔的主要数学工作
参考文献
索引
· · · · · · (收起)
丛书信息
· · · · · ·
逻辑与形而上学教科书系列(共7册),
这套丛书还有
《作为哲学的数理逻辑》《数理逻辑》《集合论》《递归论》《初等模型论》
等
。
数理逻辑(第二版)的书评 · · · · · · ( 全部 7 条 )


教案……但无疑是好教案,适合复习
作者里面写了很多无关痛痒的说明,看来是教学时候遇到一些问题的集中总结,看着还是蛮有意思的。 总体来说你要是学过一遍一阶逻辑再看这本书还是有点益处的,篇幅小,又有那么多说明帮新手去排雷,而且讲法也是四平八稳哲学系的讲法,句法语义一开始就分得很清楚,包括了重要定...
(展开)

廿二载努力,廿二载不忘
第一次接触到数理逻辑是上个世纪 90 年代我在上初中的时候。没想到隔了 20 多年自己开始自学数理逻辑了。正好图形学和机器学习都有国际会议的奖项了,可以抽空思考一下别的领域的问题。 一阶谓词逻辑体系其实并没有那么难。 这本书看的非常快,说句实话,到哥德尔那里就看不懂...
(展开)

读郝兆宽之《数理逻辑:证明及其限度》
郝兆宽, 杨睿之, 杨跃. 数理逻辑:证明及其限度. ISBN: 978-7-309-11025-8 郝兆宽, 杨睿之, 杨跃. 数理逻辑:证明及其限度. ISBN: 978-7-309-14568-7 这本书虽然不是我的数理逻辑启蒙书,但却是我读过的写的最适合入门的国内数理逻辑入门教材。最初读这本书的时候买的是 Amazon...
(展开)

> 更多书评 7篇
论坛 · · · · · ·
在这本书的论坛里发言以下书单推荐 · · · · · · ( 全部 )
- 数理逻辑 (星际旅人)
- 入门(by Chi & in Chi) (sinceever)
- 入门(rough) (sinceever)
- 数学 (肥宅快乐水)
- 数学 (睦之同学)
谁读这本书? · · · · · ·
二手市场
· · · · · ·
- 在豆瓣转让 有372人想读,手里有一本闲着?
订阅关于数理逻辑(第二版)的评论:
feed: rss 2.0
0 有用 线性代数的呼唤 2023-07-06 18:20:20 海南
好书。有空把习题做了。
0 有用 山灯 2024-02-08 11:29:59 湖北
文科生防自学指南
5 有用 Pike 2021-11-11 21:08:40
我:跟不上怎么办?某老师:那你别来了。
19 有用 DestinHistoire 2022-04-09 08:19:02
无需”中文“这一限制也依旧杰出的教材,作者在处理与日后进阶内容有关联的概念与结果上耗费了大量心血。全书的目标很明确,就是以最严格的方式处理Godel定理,并以此解决30年代大部的经典结果。严格定义递归论概念、第一定理纯粹语法的Rosser证明、第二定理完整验证三个可证性条件,编码细节的详细程度在数理逻辑教材中是绝无仅有的。作为对比,Enderton将第一定理作为Tarski定理的推论并完全放过了可... 无需”中文“这一限制也依旧杰出的教材,作者在处理与日后进阶内容有关联的概念与结果上耗费了大量心血。全书的目标很明确,就是以最严格的方式处理Godel定理,并以此解决30年代大部的经典结果。严格定义递归论概念、第一定理纯粹语法的Rosser证明、第二定理完整验证三个可证性条件,编码细节的详细程度在数理逻辑教材中是绝无仅有的。作为对比,Enderton将第一定理作为Tarski定理的推论并完全放过了可证性条件。以前听一位老师说考虑过开一门专讲Godel定理的短学期课程,考虑到其中的技巧多为特设性,对以后的学习帮助不大而搁置。但其实既然想要较好地把握高阶的集合论独立性证明,总是要练就一身在对象语言和元语言之间来去自如的功夫的,早些有这样的经验不是坏事。 (展开)
3 有用 郁欣 2022-05-25 21:58:39
对推动概念发展的动力解释清晰,适合具备一定数理逻辑基础的初阶数理逻辑学习者.