出版社: Addison Wesley
副标题: how two ex-students turned on to pure mathematics and found total happiness : a mathematical novelette
出版年: 1974-1-1
页数: 119
定价: GBP 18.99
装帧: Paperback
ISBN: 9780201038125
内容简介 · · · · · ·
From the Back Cover
Nearly 30 years ago, John Horton Conway introduced a new way to construct numbers. Donald E. Knuth, in appreciation of this revolutionary system, took a week off from work on The Art of Computer Programming to write an introduction to Conway's method. Never content with the ordinary, Knuth wrote this introduction as a work of fiction--a novelette. If not a s...
From the Back Cover
Nearly 30 years ago, John Horton Conway introduced a new way to construct numbers. Donald E. Knuth, in appreciation of this revolutionary system, took a week off from work on The Art of Computer Programming to write an introduction to Conway's method. Never content with the ordinary, Knuth wrote this introduction as a work of fiction--a novelette. If not a steamy romance, the book nonetheless shows how a young couple turned on to pure mathematics and found total happiness.
The book's primary aim, Knuth explains in a postscript, is not so much to teach Conway's theory as "to teach how one might go about developing such a theory." He continues: "Therefore, as the two characters in this book gradually explore and build up Conway's number system, I have recorded their false starts and frustrations as well as their good ideas. I wanted to give a reasonably faithful portrayal of the important principles, techniques, joys, passions, and philosophy of mathematics, so I wrote the story as I was actually doing the research myself."... It is an astonishing feat of legerdemain. An empty hat rests on a table made of a few axioms of standard set theory. Conway waves two simple rules in the air, then reaches into almost nothing and pulls out an infinitely rich tapestry of numbers that form a real and closed field. Every real number is surrounded by a host of new numbers that lie closer to it than any other "real" value does. The system is truly "surreal." quoted from Martin Gardner, Mathematical Magic Show, pp. 16--19
Surreal Numbers, now in its 13th printing, will appeal to anyone who might enjoy an engaging dialogue on abstract mathematical ideas, and who might wish to experience how new mathematics is created.
作者简介 · · · · · ·
Donald E. Knuth is known throughout the world for his pioneering work on algorithms and programming techniques, for his invention of the Tex and Metafont systems for computer typesetting, and for his prolific and influential writing. Professor Emeritus of The Art of Computer Programming at Stanford University, he currently devotes full time to the completion of these fascicles ...
Donald E. Knuth is known throughout the world for his pioneering work on algorithms and programming techniques, for his invention of the Tex and Metafont systems for computer typesetting, and for his prolific and influential writing. Professor Emeritus of The Art of Computer Programming at Stanford University, he currently devotes full time to the completion of these fascicles and the seven volumes to which they belong.
喜欢读"Surreal Numbers"的人也喜欢的电子书 · · · · · ·
喜欢读"Surreal Numbers"的人也喜欢 · · · · · ·
> 更多短评 7 条
Surreal Numbers的话题 · · · · · · ( 全部 条 )
Surreal Numbers的书评 · · · · · · ( 全部 26 条 )
> 更多书评26篇
读书笔记 · · · · · ·
我来写笔记-
清空概念 开始阅读前几章时,我感觉最大的障碍是已知的数学常识,例如:我需要不断的提我自己:“不大于等于”和“小于”在证明之前,仍是不同的概念。conway的理论,要建立一套全新的数学体系,基于最基本的规则,重新推导熟悉的东西。你要创造新的什么东西,往往第一步需要清空概念。这说起来容易,做起来其实难。 “自圆满”的系统 Conway的理论,从最简单的几个规则出发,艰难的推导出一大堆的定理,其实完全可以给出更多...
2012-03-14 16:29 2人喜欢
清空概念开始阅读前几章时,我感觉最大的障碍是已知的数学常识,例如:我需要不断的提我自己:“不大于等于”和“小于”在证明之前,仍是不同的概念。conway的理论,要建立一套全新的数学体系,基于最基本的规则,重新推导熟悉的东西。你要创造新的什么东西,往往第一步需要清空概念。这说起来容易,做起来其实难。“自圆满”的系统Conway的理论,从最简单的几个规则出发,艰难的推导出一大堆的定理,其实完全可以给出更多的规则定义(或公理)让这个推理更轻松,为什么不这样做? 觉得这和TAOCP中的MIX计算机有点像,Knuth不用已有语言描述算法,创建计算机模型MIX,这是一个高度简化的计算机模型,大师直接用这个计算机的指令系统来描述算法,如果使用某种高级语言来描述算法岂不是更轻松一些,为什么不这样做?我想,大师倾向于创建一个“自圆满”(我不知道这个词是不是合适)的系统,我觉得有下面的理由:大师要告诉你关于一切的秘密,没有任何人云亦云的肤浅接受;大师精简的系统或规则,是最干的干货,展现出最本质的东西;这些知识能构成独立的体系,让我们能看到知识体系的全貌。Why Not。在书读到中间的时候。我纠结于一个困扰,是否深入思考这样的问题:创造这套理论,是否一定选择这两个初始规则?怎么去确定:这是众多选择中,最简洁最好的一个?这种“WHY NOT”的思路,决不是质疑。而是不放弃任何可能的疑惑,多问“why not”,可以作为一种接近前辈们原创过程的一种方法,对我来说,最重要的还不是学习知识,而是感受和学习大师们思考问题的方式,是锻炼自己的思维能力,优化自己的思维方式。归纳和递归再往后读(12章,13章),当主人公们发现了自己归纳证明的一个漏洞,在痛苦之中,最后想到把所有相互依赖的定理,放在一起,统一使用数学归纳法证明,是一个很棒的思路,在证明的过程中,可以补充定理,让最终相互依赖的死循环会闭合上。感觉,这就像一堆互相递归调用的函数。你只要确定每一部递归,都的确降低了问题的规模,就不用担心最后会导致无穷递归,发生栈溢出异常。有限和无限在第14章,有一段有意思的话,“我们地球时空的度过第一天,在另一个维度的宇宙的时空,也度过一天,但当我们度过第二天,宇宙的时空却只又度过半天,再往后,我们度过第三天的时候,宇宙中只又过了四分之一天... ... 这样下去,当宇宙开始第三天的时候, 我们已经度过了无穷的岁月”(1 + 1/2 + 1/4 + 1/8 ... =2)。这虽然与这部书的主题关系不大,不过想想看啊,一个无限的时空在另外一个维度看是有限的,有限和无限也成了相对的概念。这很酷。回应 2012-03-14 16:29 -
The definition and construction of the surreals is due to John Horton Conway. They were introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness. This book is a mathematical novelette, and is notable as one of the rare cases where a new mathematical idea was first presented in a work of fiction. In his book, which takes the...
2012-02-08 00:50
The definition and construction of the surreals is due to John Horton Conway. They were introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness. This book is a mathematical novelette, and is notable as one of the rare cases where a new mathematical idea was first presented in a work of fiction. In his book, which takes the form of a dialogue, Knuth coined the term surreal numbers for what Conway had simply called numbers originally. Conway liked the new name, and later adopted it himself. Conway then described the surreal numbers and used them for analyzing games in his 1976 book On Numbers and Games.-----wiki回应 2012-02-08 00:50
-
清空概念 开始阅读前几章时,我感觉最大的障碍是已知的数学常识,例如:我需要不断的提我自己:“不大于等于”和“小于”在证明之前,仍是不同的概念。conway的理论,要建立一套全新的数学体系,基于最基本的规则,重新推导熟悉的东西。你要创造新的什么东西,往往第一步需要清空概念。这说起来容易,做起来其实难。 “自圆满”的系统 Conway的理论,从最简单的几个规则出发,艰难的推导出一大堆的定理,其实完全可以给出更多...
2012-03-14 16:29 2人喜欢
清空概念开始阅读前几章时,我感觉最大的障碍是已知的数学常识,例如:我需要不断的提我自己:“不大于等于”和“小于”在证明之前,仍是不同的概念。conway的理论,要建立一套全新的数学体系,基于最基本的规则,重新推导熟悉的东西。你要创造新的什么东西,往往第一步需要清空概念。这说起来容易,做起来其实难。“自圆满”的系统Conway的理论,从最简单的几个规则出发,艰难的推导出一大堆的定理,其实完全可以给出更多的规则定义(或公理)让这个推理更轻松,为什么不这样做? 觉得这和TAOCP中的MIX计算机有点像,Knuth不用已有语言描述算法,创建计算机模型MIX,这是一个高度简化的计算机模型,大师直接用这个计算机的指令系统来描述算法,如果使用某种高级语言来描述算法岂不是更轻松一些,为什么不这样做?我想,大师倾向于创建一个“自圆满”(我不知道这个词是不是合适)的系统,我觉得有下面的理由:大师要告诉你关于一切的秘密,没有任何人云亦云的肤浅接受;大师精简的系统或规则,是最干的干货,展现出最本质的东西;这些知识能构成独立的体系,让我们能看到知识体系的全貌。Why Not。在书读到中间的时候。我纠结于一个困扰,是否深入思考这样的问题:创造这套理论,是否一定选择这两个初始规则?怎么去确定:这是众多选择中,最简洁最好的一个?这种“WHY NOT”的思路,决不是质疑。而是不放弃任何可能的疑惑,多问“why not”,可以作为一种接近前辈们原创过程的一种方法,对我来说,最重要的还不是学习知识,而是感受和学习大师们思考问题的方式,是锻炼自己的思维能力,优化自己的思维方式。归纳和递归再往后读(12章,13章),当主人公们发现了自己归纳证明的一个漏洞,在痛苦之中,最后想到把所有相互依赖的定理,放在一起,统一使用数学归纳法证明,是一个很棒的思路,在证明的过程中,可以补充定理,让最终相互依赖的死循环会闭合上。感觉,这就像一堆互相递归调用的函数。你只要确定每一部递归,都的确降低了问题的规模,就不用担心最后会导致无穷递归,发生栈溢出异常。有限和无限在第14章,有一段有意思的话,“我们地球时空的度过第一天,在另一个维度的宇宙的时空,也度过一天,但当我们度过第二天,宇宙的时空却只又度过半天,再往后,我们度过第三天的时候,宇宙中只又过了四分之一天... ... 这样下去,当宇宙开始第三天的时候, 我们已经度过了无穷的岁月”(1 + 1/2 + 1/4 + 1/8 ... =2)。这虽然与这部书的主题关系不大,不过想想看啊,一个无限的时空在另外一个维度看是有限的,有限和无限也成了相对的概念。这很酷。回应 2012-03-14 16:29 -
The definition and construction of the surreals is due to John Horton Conway. They were introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness. This book is a mathematical novelette, and is notable as one of the rare cases where a new mathematical idea was first presented in a work of fiction. In his book, which takes the...
2012-02-08 00:50
The definition and construction of the surreals is due to John Horton Conway. They were introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness. This book is a mathematical novelette, and is notable as one of the rare cases where a new mathematical idea was first presented in a work of fiction. In his book, which takes the form of a dialogue, Knuth coined the term surreal numbers for what Conway had simply called numbers originally. Conway liked the new name, and later adopted it himself. Conway then described the surreal numbers and used them for analyzing games in his 1976 book On Numbers and Games.-----wiki回应 2012-02-08 00:50
-
清空概念 开始阅读前几章时,我感觉最大的障碍是已知的数学常识,例如:我需要不断的提我自己:“不大于等于”和“小于”在证明之前,仍是不同的概念。conway的理论,要建立一套全新的数学体系,基于最基本的规则,重新推导熟悉的东西。你要创造新的什么东西,往往第一步需要清空概念。这说起来容易,做起来其实难。 “自圆满”的系统 Conway的理论,从最简单的几个规则出发,艰难的推导出一大堆的定理,其实完全可以给出更多...
2012-03-14 16:29 2人喜欢
清空概念开始阅读前几章时,我感觉最大的障碍是已知的数学常识,例如:我需要不断的提我自己:“不大于等于”和“小于”在证明之前,仍是不同的概念。conway的理论,要建立一套全新的数学体系,基于最基本的规则,重新推导熟悉的东西。你要创造新的什么东西,往往第一步需要清空概念。这说起来容易,做起来其实难。“自圆满”的系统Conway的理论,从最简单的几个规则出发,艰难的推导出一大堆的定理,其实完全可以给出更多的规则定义(或公理)让这个推理更轻松,为什么不这样做? 觉得这和TAOCP中的MIX计算机有点像,Knuth不用已有语言描述算法,创建计算机模型MIX,这是一个高度简化的计算机模型,大师直接用这个计算机的指令系统来描述算法,如果使用某种高级语言来描述算法岂不是更轻松一些,为什么不这样做?我想,大师倾向于创建一个“自圆满”(我不知道这个词是不是合适)的系统,我觉得有下面的理由:大师要告诉你关于一切的秘密,没有任何人云亦云的肤浅接受;大师精简的系统或规则,是最干的干货,展现出最本质的东西;这些知识能构成独立的体系,让我们能看到知识体系的全貌。Why Not。在书读到中间的时候。我纠结于一个困扰,是否深入思考这样的问题:创造这套理论,是否一定选择这两个初始规则?怎么去确定:这是众多选择中,最简洁最好的一个?这种“WHY NOT”的思路,决不是质疑。而是不放弃任何可能的疑惑,多问“why not”,可以作为一种接近前辈们原创过程的一种方法,对我来说,最重要的还不是学习知识,而是感受和学习大师们思考问题的方式,是锻炼自己的思维能力,优化自己的思维方式。归纳和递归再往后读(12章,13章),当主人公们发现了自己归纳证明的一个漏洞,在痛苦之中,最后想到把所有相互依赖的定理,放在一起,统一使用数学归纳法证明,是一个很棒的思路,在证明的过程中,可以补充定理,让最终相互依赖的死循环会闭合上。感觉,这就像一堆互相递归调用的函数。你只要确定每一部递归,都的确降低了问题的规模,就不用担心最后会导致无穷递归,发生栈溢出异常。有限和无限在第14章,有一段有意思的话,“我们地球时空的度过第一天,在另一个维度的宇宙的时空,也度过一天,但当我们度过第二天,宇宙的时空却只又度过半天,再往后,我们度过第三天的时候,宇宙中只又过了四分之一天... ... 这样下去,当宇宙开始第三天的时候, 我们已经度过了无穷的岁月”(1 + 1/2 + 1/4 + 1/8 ... =2)。这虽然与这部书的主题关系不大,不过想想看啊,一个无限的时空在另外一个维度看是有限的,有限和无限也成了相对的概念。这很酷。回应 2012-03-14 16:29 -
The definition and construction of the surreals is due to John Horton Conway. They were introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness. This book is a mathematical novelette, and is notable as one of the rare cases where a new mathematical idea was first presented in a work of fiction. In his book, which takes the...
2012-02-08 00:50
The definition and construction of the surreals is due to John Horton Conway. They were introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness. This book is a mathematical novelette, and is notable as one of the rare cases where a new mathematical idea was first presented in a work of fiction. In his book, which takes the form of a dialogue, Knuth coined the term surreal numbers for what Conway had simply called numbers originally. Conway liked the new name, and later adopted it himself. Conway then described the surreal numbers and used them for analyzing games in his 1976 book On Numbers and Games.-----wiki回应 2012-02-08 00:50
论坛 · · · · · ·
| Surreal Numbers 中英文双语版来啦! | 来自Bloom | 3 回应 | 2012-01-07 |
在哪儿买这本书 · · · · · ·
这本书的其他版本 · · · · · · ( 全部4 )
以下豆列推荐 · · · · · · ( 全部 )
- 要读的书 (TBONTB64)
- D.E.K (Daniel)
- 技术书籍 (xx05800)
- Mathnovels (积木)
- On Science ([已注销])
谁读这本书?
二手市场
- > 点这儿转让 有133人想读,手里有一本闲着?
订阅关于Surreal Numbers的评论:
feed: rss 2.0










0 有用 zp 2013-12-07
http://en.wikipedia.org/wiki/Surreal_number
0 有用 tiutiu 2013-06-15
虽然是大神写的。。。可是读了一半就读不下去了。不是很喜欢这种风格。。。
0 有用 Ryaaan 2012-07-09
数学证明看得好累,没看出他跟计算机科学的关系,研究之美这思想还是不错的
0 有用 west lake 2013-05-10
读起来不轻松。。。不过能和一个人擦出思想的火花一定是很美妙的一件事:) "There are infinitely many things yet to do...and only a finite amount of time..."
0 有用 O(1) 的小乐 2012-01-18
不得不佩服Knuth的yy能力。。。这书还不错,感觉蛮严谨的。后续部分理解有点困难
0 有用 孟先生 2015-11-02
第一口气读完了1-3章,第二口气读完了剩余部分;不推公式也很好看。
0 有用 zp 2013-12-07
http://en.wikipedia.org/wiki/Surreal_number
0 有用 tiutiu 2013-06-15
虽然是大神写的。。。可是读了一半就读不下去了。不是很喜欢这种风格。。。
0 有用 Ryaaan 2012-07-09
数学证明看得好累,没看出他跟计算机科学的关系,研究之美这思想还是不错的
0 有用 west lake 2013-05-10
读起来不轻松。。。不过能和一个人擦出思想的火花一定是很美妙的一件事:) "There are infinitely many things yet to do...and only a finite amount of time..."