作者:
Donald E. Knuth 出版社: Addison Wesley 副标题: how two ex-students turned on to pure mathematics and found total happiness : a mathematical novelette 出版年: 1974-1-1 页数: 128 定价: GBP 18.99 装帧: Paperback ISBN: 9780201038125
Nearly 30 years ago, John Horton Conway introduced a new way to construct numbers. Donald E. Knuth, in appreciation of this revolutionary system, took a week off from work on The Art of Computer Programming to write an introduction to Conway's method. Never content with the ordinary, Knuth wrote this introduction as a work of fiction--a novelette. If not a steamy romance, the b...
Nearly 30 years ago, John Horton Conway introduced a new way to construct numbers. Donald E. Knuth, in appreciation of this revolutionary system, took a week off from work on The Art of Computer Programming to write an introduction to Conway's method. Never content with the ordinary, Knuth wrote this introduction as a work of fiction--a novelette. If not a steamy romance, the book nonetheless shows how a young couple turned on to pure mathematics and found total happiness. The book's primary aim, Knuth explains in a postscript, is not so much to teach Conway's theory as "to teach how one might go about developing such a theory." He continues: "Therefore, as the two characters in this book gradually explore and build up Conway's number system, I have recorded their false starts and frustrations as well as their good ideas. I wanted to give a reasonably faithful portrayal of the important principles, techniques, joys, passions, and philosophy of mathematics, so I wrote the story as I was actually doing the research myself."...It is an astonishing feat of legerdemain. An empty hat rests on a table made of a few axioms of standard set theory.Conway waves two simple rules in the air, then reaches into almost nothing and pulls out an infinitely rich tapestry of numbers that form a real and closed field. Every real number is surrounded by a host of new numbers that lie closer to it than any other "real" value does. The system is truly "surreal." quoted from Martin Gardner, Mathematical Magic Show, pp. 16--19 Surreal Numbers, now in its 13th printing, will appeal to anyone who might enjoy an engaging dialogue on abstract mathematical ideas, and who might wish to experience how new mathematics is created. 0201038129B04062001
Donald E. Knuth is known throughout the world for his pioneering work on algorithms and programming techniques, for his invention of the Tex and Metafont systems for computer typesetting, and for his prolific and influential writing. Professor Emeritus of The Art of Computer Programming at Stanford University, he currently devotes full time to the completion of these fascicles ...
Donald E. Knuth is known throughout the world for his pioneering work on algorithms and programming techniques, for his invention of the Tex and Metafont systems for computer typesetting, and for his prolific and influential writing. Professor Emeritus of The Art of Computer Programming at Stanford University, he currently devotes full time to the completion of these fascicles and the seven volumes to which they belong.
推荐一份论文,对理解本书可能会有些帮助 An Introduction to Surreal Number http://www.whitman.edu/mathematics/SeniorProjectArchive/2012/Grimm.pdf 这份论文将 Surreal Number 书中 Alice 和 Bill 的结论用形式化的语言来描述和证明。形式化的证明虽然看起来不像小说一...
(展开)
0 有用 低调的小哥儿 2020-03-07 12:12:27
对话体形式来讨论自然数这个基础,在此基础上定义了加法和乘法,非常的严谨,不过也很抽象比较难以理解,对人的挑战很大!
0 有用 彭彰 2013-12-07 19:41:08
http://en.wikipedia.org/wiki/Surreal_number
0 有用 lred 2023-04-01 05:31:29 江苏
一男一女 在荒岛上 研究数学 well im sorry im not complicated enough for u
0 有用 孟先生 2015-11-02 16:47:00
第一口气读完了1-3章,第二口气读完了剩余部分;不推公式也很好看。
0 有用 west lake 2013-05-10 16:19:11
读起来不轻松。。。不过能和一个人擦出思想的火花一定是很美妙的一件事:) "There are infinitely many things yet to do...and only a finite amount of time..."