出版社: MIT Press
副标题: A Probabilistic Perspective
出版年: 2012-9-18
页数: 1096
定价: USD 90.00
装帧: Hardcover
丛书: Adaptive Computation and Machine Learning
ISBN: 9780262018029
内容简介 · · · · · ·
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, a unified, probabilistic a...
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Machine Learning的创作者
· · · · · ·
作者简介 · · · · · ·
Kevin P. Murphy is Associate Professor in the Department of Computer Science and in the Department of Statistics at the University of British Columbia.
目录 · · · · · ·
Chapter 2: Probability
Chapter 3: Statistics
Chapter 4: Gaussian models
Chapter 5: Generative models for classification
Chapter 6: Discriminative linear models
· · · · · · (更多)
Chapter 2: Probability
Chapter 3: Statistics
Chapter 4: Gaussian models
Chapter 5: Generative models for classification
Chapter 6: Discriminative linear models
Chapter 7: Graphical Models
Chapter 8: Decision theory
Chapter 9: Mixture models and the EM algorithm
Chapter 10: Latent Linear models
Chapter 11: Hierarchical Bayes
Chapter 12: Sparce Linear Models
Chapter 13: Kernels
Chapter 14: Gaussian processes
Chapter 15: Adaptive basis function models
Chapter 16: Markov and hidden Markov Models
Chapter 17: State space models
Chapter 18: Conditional random fields
Chapter 19: Exact inference algorithms for graphical models
Chapter 20: Mean field inference algorithms
Chapter 21: Other variational inference algorithms
Chapter 22: Monte Carlo inference algorithms
Chapter 23: MCMC inference algorithms
Chapter 24: Clustering
Chapter 25: Graphical model structure learning
Chapter 26: Two-layer latent variable models
Chapter 27: Deep learning
· · · · · · (收起)
丛书信息
· · · · · ·
喜欢读"Machine Learning"的人也喜欢的电子书 · · · · · ·
Machine Learning的书评 · · · · · · ( 全部 16 条 )
ML最好的教科书之一
> 更多书评 16篇
以下书单推荐 · · · · · · ( 全部 )
- machine learning textbooks (厂农)
- Machine Learning (pluskid)
- 学习DL/算法/医学图像分析/的路程 (风细细™)
- 机器学习 (Yingfeng)
- 机器学习-数学理论与实际领域应用入门进阶 (xiaoliable)
谁读这本书? · · · · · ·
二手市场
· · · · · ·
订阅关于Machine Learning的评论:
feed: rss 2.0
0 有用 Bis 2021-10-17 06:38:29
.... 从推荐里拿出去
1 有用 Ginger 2022-09-05 21:28:58 加拿大
有点百科全书式。非常庞大庞杂。语言不是很友好。但是深度很🉑。比较适合搞PhD的尤其是要做理论的读。
0 有用 施威林先生 2022-01-03 11:34:38
百科全书一般,但是有点太细致了,适合遇到问题时查一查。(补标:2014-2015)
1 有用 ize 2015-06-15 09:58:27
太执着于一个学派也不好。大坑慎入。 Important chapters 4 me: Chaps.3-12, 14, 17, 19 & 25.
0 有用 josuya 2013-01-18 10:01:09
这本书优点就是很全面,千余页的大部头,啥都有。缺点也是很全面,每一个点都不太细致,还需要自己去找论文看。
0 有用 Starry 2024-09-29 15:10:41 美国
经典,不知不觉作者另一新书都出了快2年了
0 有用 Sisyphus 2023-12-22 23:19:00 美国
补标
0 有用 Chao Peng 彭超 2023-02-19 07:47:58 北京
和Elements of Statistical Learning 一起看
0 有用 镇守府的尼克桑 2022-12-25 01:01:43 美国
深入Machine Learning内部的数学原理。
2 有用 Rex 2022-12-18 04:50:40 美国
One of the textbook used in the course "Introduction to Machine Learning" at CMU in the forth year of PhD. Good for reference, but not good for reading or learning. Most ML books are not worth reading... One of the textbook used in the course "Introduction to Machine Learning" at CMU in the forth year of PhD. Good for reference, but not good for reading or learning. Most ML books are not worth reading if you are a math student, including this one. (展开)