出版社: McGraw-Hill Education
副标题: International Series in Pure and Applied Mathematics
出版年: 1976-2-16
页数: 325
定价: GBP 119.99
装帧: Hardcover
丛书: International Series in Pure and Applied Mathematics
ISBN: 9780070542358
内容简介 · · · · · ·
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of conve...
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included.
This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Principles of Mathematical Analysis的创作者
· · · · · ·
-
沃尔特·鲁丁 作者
目录 · · · · · ·
Introduction 1
Ordered Sets 3
Fields 5
The Real Field 8
The Extended Real Number System 11
· · · · · · (更多)
Introduction 1
Ordered Sets 3
Fields 5
The Real Field 8
The Extended Real Number System 11
The Complex Field 12
Euclidean Spaces 16
Appendix 17
Exercises 21
Chapter 2 Basic Topology 24
Finite, Countable, and, Uncountable Sets 24
Metric Spaces 30
Compact Sets 36
Perfect Sets 41
Connected Sets 42
Exercises 43
Chapter 3 Numerical Sequences and Series 47
Convergent Sequences 47
Subsequences 51
Cauchy Sequences 52
Upper and Lower Limits 55
Some Special Sequences 57
Series 58
Series of Nonnegative Terms 61
The Number e 63
The Root and Ratio Tests 65
Power Series 69
Summation by Parts 70
Absolute Convergence 71
Addition and Multiplication of Series 72
Rearrangements 75
Exercises 78
Chapter 4 Continuity 83
Limits of Functions 83
Continuous Functions 85
Continuity and Compactness 89
Continuity and Connectedness 93
Discontinuities 94
Monotonic Functions 95
Infinite Limits and Limits at Infinity 97
Exercises 98
Chapter 5 Differetiation 103
The Derivative of a Real Function 103
Mean Value Theorems 107
The Continuity of Derivatives 108
L'Hospital's Rule 109
Derivatives of Higher Order 110
Taylor's Theorem 110
Differentiation of Vector-valued Functions 114
Chapter 6 The Riemann-Stieltjes Integral 120
Definition and Existence of the Integral 120
Properties of the Integral 128
Integration and Differentiation 133
Integration of Vector-valued Functions 135
Rectifiable Curves 136
Chapter 7 Sequences and Series of Functions 143
Discussion of Main Problem 143
Uniform Convergence 143
Uniform Convergence and Continuity 149
Uniform Convergence and Integration 151
Uniform Convergence and Differentiation 152
Equicontinuous Families of Functions 154
The Stone-Weierstrass Theorem 159
Exercises 165
Chapter 8 Some Special Functions 172
Power Series 172
The Exponential and Logarithmic Functions 178
The Trigonometric Functions 182
The Algebraic Completeness of the Complex Field 184
Fourier Series 185
The Gamma Function 192
Exericises 196
Chapter 9 Functions of Several Variables 204
Linear Transformations 204
Differentiation 211
The Contraction Principle 220
The Inverse Function Theorem 221
The Implicit Function Theorem 223
The Rank Theorem 228
Determinants 231
Derivatives of Higher Order 235
Differentiation of Integrals 236
Exercises 239
Chapter 10 Integration of Differential Forms 245
Integration 245
Primitive Mappings 248
Partitions of Unity 251
Change of Variables 252
Differential Forms 253
Simplexes and Chains 266
Stokes' Theorem 273
Closed Forms and Exact Forms 275
Vector Analysis 280
Exercises 288
Chapter 11 The Lebesgue Theory 300
Set Functions 300
Construction of the lebesgue Measure 302
Measure Spaces 310
Measurable Functions 310
Simple Functions 313
Integration 314
Comparison with the Riemann Integral 322
Integration of Complex Functions 325
Functions of Class L2 325
Exercises 332
Bibliography 335
List of Special Symbols 337
Index 339
· · · · · · (收起)
丛书信息
· · · · · ·
喜欢读"Principles of Mathematical Analysis"的人也喜欢 · · · · · ·
Principles of Mathematical Analysis的书评 · · · · · · ( 全部 23 条 )



谈一下卓里奇和Rudin的对比
> 更多书评 23篇
论坛 · · · · · ·
在这本书的论坛里发言这本书的其他版本 · · · · · · ( 全部13 )
-
机械工业出版社 (2004)9.5分 600人读过
-
机械工业出版社 (2004)9.1分 490人读过
-
-
McGraw Hill Higher Education (1976)9.4分 35人读过
以下书单推荐 · · · · · · ( 全部 )
- 新加坡国立大学本科数学参考书 (Joseph)
- math (才色兼備)
- 理工社科grad students的必要数学修养 (withinbeyond)
- 数据挖掘参考书 (cruyff)
- IE OR 工业工程 运筹 (Life of Joseph)
谁读这本书? · · · · · ·
二手市场
· · · · · ·
- 在豆瓣转让 有482人想读,手里有一本闲着?
订阅关于Principles of Mathematical Analysis的评论:
feed: rss 2.0
4 有用 Welfare 2013-12-17 06:28:23
3A concise, similar to lecture notes, but no solution to exercise..
0 有用 GentryHuang 2022-03-18 01:12:19
纸质主要看大陆影印版,但是也会用到电子版,所以电子版对应条目也标记一下,这是我从大一开始就希望做的事了,终于实现了。
1 有用 whatever 2015-01-21 09:09:58
还...了一部分,学了前七章,可惜第二学期好像不讲rudin了
2 有用 Ennnnn 2015-04-04 04:46:48
苛刻地说槽点真的很多,还有烂尾的嫌疑<<--回顧多年前的評論覺得天真了,如今想找到一本rudin這樣字典式的教材該有多難
0 有用 截断误差 2014-03-23 12:13:55
微言大义。