作者:
William Feller
出版社: 人民邮电出版社
原作名: An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition
译者: 胡迪鹤
出版年: 2006-5
页数: 392
定价: 59.00元
装帧: 平装
丛书: 图灵数学·统计学丛书
ISBN: 9787115147295
出版社: 人民邮电出版社
原作名: An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition
译者: 胡迪鹤
出版年: 2006-5
页数: 392
定价: 59.00元
装帧: 平装
丛书: 图灵数学·统计学丛书
ISBN: 9787115147295
内容简介 · · · · · ·
《概率论及其应用》(第3版)涉及面极广,不仅讨论了概率论在离散空间中的诸多课题,也涉及了概率论在物理学、化学、生物学(特别是遗传学)、博弈论及经济学等方面的应用,主要内容有:样本空间及其上的概率计算,独立随机变量之和的随机起伏,事件的组合及条件概率,离散随机变量及其数字特征,大数定律,离散的马尔可夫过程及其各种重要特征,更新理论等,除正文外,《概率论及其应用》(第3版)还附有六七百道习题和大量的附录。
作者简介 · · · · · ·
威廉·费勒(1906-1970)克罗地亚裔美国数学家。20世纪最伟大的概率学家之一。师从著名数学家希尔伯特和柯朗,年仅20岁就获得哥廷根大学的博士学位。在生灭过程、随机泛函、可列马尔科夫过程积分型泛函的分布、布朗运动与位势、超过程等方向上均成就斐然,对近代概率论的发展作出了卓越的贡献。特别是他的两本专著(本书及本书的第2卷),曾影响了世界各国几代概率论及相关领域的人士。
目录 · · · · · ·
第0章 绪论概率论的性质
O.1 背景
0.2 方法和步骤
O.3 “统计”概率-
0.4 摘要
0.5 历史小记
第1章 样本空间
1.1 经验背景
1.2 例子
1.3 样本空间·事件
1.4 事件之间的关系
1.5 离散样本空间
1.6 离散样本空间中的概率预备知识
1.7 基本定义和规则
1.8 习题
第2章 组合分析概要
2.1 预备知识
2.2 有序样本
2.3 例子
2.4 子总体和分划
2.5 在占位问题中的应用
2.6 超几何分布
2.7 等待时间的例子
2.8 二项式系数
2.9 斯特林公式
2.10 习题和例子
2.1l 问题和理论性的附录
2.12 二项式系数的一些问题和恒等式
第3章 扔硬币的起伏问题和随机徘徊
3.1 一般讨论及反射原理
3.2 随机徘徊的基本记号及概念
3.3 主要引理
3.4 末次访问与长领先
3.5 符号变换
3.6 一个实验的说明
3.7 最大和初过
3.8 对偶性·最大的位置
3.9 一个等分布定理
3.10 习题
第4章 事件的组合
4.1 事件之并
4.2 在古典占位问题中的应用
4.3 N个事件中实现m件
4.4 在相合与猜测问题中的应用
4.5 杂录
4.6 习题
第5章 条件概率·随机独立性.
5.1 条件概率
5.2 用条件概率所定义的概率·罐子模型
5.3 随机独立性
5.4 乘积空间·独立试验
5.5 在遗传学中的应用
5.6 伴性性状
5.7 选择
5.8 习题
第6章 二项分布与泊松分布
6.1 伯努利试验序列
6.2 二项分布
6.3 中心项及尾项
6.4 大数定律
6.5 泊松逼近
6.6 泊松分布
6.7 符合泊松分布的观察结果
6.8 等待时问·负二项分布
6.9 多项分布
6.10 习题
第7章 二项分布的正态逼近
7.1 正态分布
7.2 预备知识:对称分布
7.3 棣莫弗一拉普拉斯极限定理
7.4 例子
7.5 与泊松逼近的关系
7.6 大偏差
7.7 习题
第8章 伯努利试验的无穷序列
8.1 试验的无穷序列
8.2 赌博的长策
8.3 波雷尔一坎特立引理
8.4 强大数定律
8.5 迭对数法则-
8.6 用数论的语言解释
8.7 习题
第9章 随机变量·期望值
9.1 随机变量
9.2 期望值
9.3 例子及应用
9.4 方差
9.5 协方差·和的方差
9.6 切比雪夫不等式
9.7 科尔莫戈罗夫不等式
9.8 相关系数
9.9 习题
第10章 大数定律
10.1 同分布的随机变量列
10.2 大数定律的证明
10.3 “公平”博弈论
10.4 彼得堡博弈
10.5 不同分布的情况
10.6 在组合分析中的应用
10.7 强大数定律
10.8 习题
第11章 取整数值的随机变量·母函数
11.1 概论
11.2 卷积
11.3 伯努利试验序列中的等待时与均等
11.4 部分分式展开
11.5 二元母函数
11.6 连续性定理
11.7 习题
第12章 复合分布·分支过程
12.1 随机个随机变量之和
12.2 复合泊松分布
12.3 分支过程的例子
12.4 分支过程的灭绝概率
12.5 分支过程的总后代
12.6 习题
第13章 循环事件·更新理论
13.1 直观导引与例子
13.2 定义
13.3 基本关系
13.4 例子
13.5 迟延循环事件·一个一般性极限定理
13.6 S出现的次数
13.7 在成功连贯中的应用
13.8 更一般的样型
13.9 几何等待时间的记忆缺损
13.10 更新理论
13.11 基本极限定理的证明
13.12 习题
第14章 随机徘徊与破产问题
14.1 一般讨论
14.2 古典破产问题
14.3 博弈持续时间的期望值
14.4 博弈持续时间和初达时的母函数
14.5 显式表达式
14.6 与扩散过程的关系
14.7 平面和空间中的随机徘徊
14.8 广义一维随机徘徊(序贯抽样)
14.9 习题
第15章 马尔可夫链
15.1 定义
15.2 直观例子-
T5.3 高阶转移概率
15.4 闭包与闭集
15.5 状态的分类
15.6 不可约链·分解
15.7 不变分布
15.8 暂留链
15.9 周期链
15.10 在洗牌中的应用
15.11 不变测度·比率极限定理
15.12 逆链·边界
15.13 一般的马尔可夫过程
15.14 习题
第16章 有限马尔可夫链的代数处理
16.1 一般理论
16.2 例子
16.3 具有反射壁的随机徘徊
16.4 暂留状态·吸收概率
16.5 在循环时间中的应用
第17章 最简单的依时的随机过程
17.1 一般概念·马尔可夫过程
17.2 泊松过程
17.3 纯生过程
17.4 发散的生过程
17.5 生灭过程
17.6 指数持续时间
17.7 等待队列与服务问题
17.8 倒退(向后)方程
17.9 一般过程
17.10 习题
习题解答
参考文献
索引
人名对照表-
· · · · · · (收起)
O.1 背景
0.2 方法和步骤
O.3 “统计”概率-
0.4 摘要
0.5 历史小记
第1章 样本空间
1.1 经验背景
1.2 例子
1.3 样本空间·事件
1.4 事件之间的关系
1.5 离散样本空间
1.6 离散样本空间中的概率预备知识
1.7 基本定义和规则
1.8 习题
第2章 组合分析概要
2.1 预备知识
2.2 有序样本
2.3 例子
2.4 子总体和分划
2.5 在占位问题中的应用
2.6 超几何分布
2.7 等待时间的例子
2.8 二项式系数
2.9 斯特林公式
2.10 习题和例子
2.1l 问题和理论性的附录
2.12 二项式系数的一些问题和恒等式
第3章 扔硬币的起伏问题和随机徘徊
3.1 一般讨论及反射原理
3.2 随机徘徊的基本记号及概念
3.3 主要引理
3.4 末次访问与长领先
3.5 符号变换
3.6 一个实验的说明
3.7 最大和初过
3.8 对偶性·最大的位置
3.9 一个等分布定理
3.10 习题
第4章 事件的组合
4.1 事件之并
4.2 在古典占位问题中的应用
4.3 N个事件中实现m件
4.4 在相合与猜测问题中的应用
4.5 杂录
4.6 习题
第5章 条件概率·随机独立性.
5.1 条件概率
5.2 用条件概率所定义的概率·罐子模型
5.3 随机独立性
5.4 乘积空间·独立试验
5.5 在遗传学中的应用
5.6 伴性性状
5.7 选择
5.8 习题
第6章 二项分布与泊松分布
6.1 伯努利试验序列
6.2 二项分布
6.3 中心项及尾项
6.4 大数定律
6.5 泊松逼近
6.6 泊松分布
6.7 符合泊松分布的观察结果
6.8 等待时问·负二项分布
6.9 多项分布
6.10 习题
第7章 二项分布的正态逼近
7.1 正态分布
7.2 预备知识:对称分布
7.3 棣莫弗一拉普拉斯极限定理
7.4 例子
7.5 与泊松逼近的关系
7.6 大偏差
7.7 习题
第8章 伯努利试验的无穷序列
8.1 试验的无穷序列
8.2 赌博的长策
8.3 波雷尔一坎特立引理
8.4 强大数定律
8.5 迭对数法则-
8.6 用数论的语言解释
8.7 习题
第9章 随机变量·期望值
9.1 随机变量
9.2 期望值
9.3 例子及应用
9.4 方差
9.5 协方差·和的方差
9.6 切比雪夫不等式
9.7 科尔莫戈罗夫不等式
9.8 相关系数
9.9 习题
第10章 大数定律
10.1 同分布的随机变量列
10.2 大数定律的证明
10.3 “公平”博弈论
10.4 彼得堡博弈
10.5 不同分布的情况
10.6 在组合分析中的应用
10.7 强大数定律
10.8 习题
第11章 取整数值的随机变量·母函数
11.1 概论
11.2 卷积
11.3 伯努利试验序列中的等待时与均等
11.4 部分分式展开
11.5 二元母函数
11.6 连续性定理
11.7 习题
第12章 复合分布·分支过程
12.1 随机个随机变量之和
12.2 复合泊松分布
12.3 分支过程的例子
12.4 分支过程的灭绝概率
12.5 分支过程的总后代
12.6 习题
第13章 循环事件·更新理论
13.1 直观导引与例子
13.2 定义
13.3 基本关系
13.4 例子
13.5 迟延循环事件·一个一般性极限定理
13.6 S出现的次数
13.7 在成功连贯中的应用
13.8 更一般的样型
13.9 几何等待时间的记忆缺损
13.10 更新理论
13.11 基本极限定理的证明
13.12 习题
第14章 随机徘徊与破产问题
14.1 一般讨论
14.2 古典破产问题
14.3 博弈持续时间的期望值
14.4 博弈持续时间和初达时的母函数
14.5 显式表达式
14.6 与扩散过程的关系
14.7 平面和空间中的随机徘徊
14.8 广义一维随机徘徊(序贯抽样)
14.9 习题
第15章 马尔可夫链
15.1 定义
15.2 直观例子-
T5.3 高阶转移概率
15.4 闭包与闭集
15.5 状态的分类
15.6 不可约链·分解
15.7 不变分布
15.8 暂留链
15.9 周期链
15.10 在洗牌中的应用
15.11 不变测度·比率极限定理
15.12 逆链·边界
15.13 一般的马尔可夫过程
15.14 习题
第16章 有限马尔可夫链的代数处理
16.1 一般理论
16.2 例子
16.3 具有反射壁的随机徘徊
16.4 暂留状态·吸收概率
16.5 在循环时间中的应用
第17章 最简单的依时的随机过程
17.1 一般概念·马尔可夫过程
17.2 泊松过程
17.3 纯生过程
17.4 发散的生过程
17.5 生灭过程
17.6 指数持续时间
17.7 等待队列与服务问题
17.8 倒退(向后)方程
17.9 一般过程
17.10 习题
习题解答
参考文献
索引
人名对照表-
· · · · · · (收起)
原文摘录 · · · · · ·
丛书信息
· · · · · ·
图灵数学·统计学丛书(共70册),
这套丛书还有
《金融工程原理》《概率导论 (第2版·修订版)》《微积分入门Ⅱ》《基础拓扑学》《运筹学导论:初级篇(第8版)》
等
。
喜欢读"概率论及其应用(第1卷·第3版)"的人也喜欢 · · · · · ·
概率论及其应用(第1卷·第3版)的书评 · · · · · · ( 全部 4 条 )
一本难得的概率入门书
这本书里面涉及到多个概率模型,比如说是球盒问题。优惠券桥牌基因的分布骰子10随机数宇宙射线抽样生物学中的照射事故生日,等等全部都变成了球盒模型。和以往的概率书完全不同,他通过模型的转化朗读者,非常容易理解概率的入门。 再补充一点,在开篇经验里面介绍的样本空间,...
(展开)
> 更多书评 4篇
论坛 · · · · · ·
请问这本书习题的完整答案哪里能找到? | 来自abc | 2022-09-01 11:01:15 | |
适合初学者吗? | 来自fansy | 2019-10-25 14:12:40 | |
好书 概率论的传世经典 | 来自ㄟ( ̄▽ ̄ㄟ) | 1 回应 | 2017-11-23 19:40:56 |
非常好的书 | 来自铁血舞长空 | 1 回应 | 2015-04-29 13:15:55 |
这本书 纸质是不是超差的 | 来自游真 | 5 回应 | 2014-08-31 19:10:00 |
> 浏览更多话题
这本书的其他版本 · · · · · · ( 全部6 )
-
John Wiley & Sons (1968)9.5分 29人读过
-
人民邮电出版社 (2014)9.3分 33人读过
-
人民邮电出版社 (2021)暂无评分 3人读过
-
世界图书出版公司 (2021)暂无评分 1人读过
在哪儿借这本书 · · · · · ·
以下书单推荐 · · · · · · ( 全部 )
- 机器学习与人工智能 (刘未鹏pongba)
- 计算机系学生的数学书架 (网络流)
- 统计学史中英文书籍收藏 (左思)
- Kogorou推荐的概率统计名著 (Kogorou)
- 图灵数学 (momo)
谁读这本书? · · · · · ·
二手市场
· · · · · ·
订阅关于概率论及其应用(第1卷·第3版)的评论:
feed: rss 2.0
0 有用 paracelsus 2024-08-11 12:09:26 上海
补标。第一卷基本完整读完,写得真挺好的~
1 有用 伪文人想摇滚 2020-01-08 12:20:24
主要是想从这本书里获取生活上思维的理性化,以及决策上的理性化.看完发现达到这个目的这本书无法给我,它更偏学术. 推荐<算法之美>这本书,达到了我的需求
1 有用 死也要死在美丽的北欧 2008-09-21 12:32:09
如果你真的想理解概率论,feller的两本书是不可不读的,可以说,从高中水平到博士以上学位的读者,都会从中获益---如果要推选概率论里面最有影响的教材,feller的书无可比拟,不过读时要一路自己算,feller书里面错误非常多,虽然都显然是笔误
39 有用 echo 2012-03-25 22:17:02
概率论只不过是把常识用数学公式表达了出来。 ——拉普拉斯
1 有用 panjf 2009-08-04 16:42:34
不考虑翻译和印刷错误,真的还是不错的
0 有用 paracelsus 2024-08-11 12:09:26 上海
补标。第一卷基本完整读完,写得真挺好的~
0 有用 兰陵笑笑生 2024-03-06 15:07:15 广东
真的好
0 有用 thepartyisover 2024-01-13 13:32:19 北京
@2016-02-14 22:28:33
1 有用 Fatescript 2022-12-19 15:06:50 北京
一本真正的神书。前面的章节读起来特别像小说,而且前面的章节和组合数学结合看能有很大的收益。后面的章节感觉写的不如前面那么流畅了,有一天我会回来重读马尔可夫链之后的部分。 总体评价:9分,深入概率论的好书。 读完才发现一些书籍把概率论和数理统计一起讲其实很不科学,完全可以说是两门学科...
0 有用 frankwyw7 2022-03-30 22:40:19
现在才发现,书里没有回归分析,不大适合计算机。。。