出版社: Packt Publishing - ebooks Account
出版年: 2015-9
页数: 454
定价: USD 44.99
装帧: Paperback
ISBN: 9781783555130
内容简介 · · · · · ·
About This Book
Leverage Python' s most powerful open-source libraries for deep learning, data wrangling, and data visualization
Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms
Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets
Who This Book Is For
If you wan...
About This Book
Leverage Python' s most powerful open-source libraries for deep learning, data wrangling, and data visualization
Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms
Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets
Who This Book Is For
If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.
What You Will Learn
Explore how to use different machine learning models to ask different questions of your data
Learn how to build neural networks using Keras and Theano
Find out how to write clean and elegant Python code that will optimize the strength of your algorithms
Discover how to embed your machine learning model in a web application for increased accessibility
Predict continuous target outcomes using regression analysis
Uncover hidden patterns and structures in data with clustering
Organize data using effective pre-processing techniques
Get to grips with sentiment analysis to delve deeper into textual and social media data
Style and approach
Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
喜欢读"Python Machine Learning"的人也喜欢 · · · · · ·
Python Machine Learning的书评 · · · · · · ( 全部 14 条 )


内容更丰富、工具更新

第三版19年下半年就出来了

从原理到实战的较全面介绍

PyTorch版很有吸引力

> 更多书评 14篇
论坛 · · · · · ·
本书资源、讨论、更正等 | 来自Lucas | 1 回应 | 2017-09-25 14:52:35 |
这本书的其他版本 · · · · · · ( 全部9 )
-
机械工业出版社 (2017)7.9分 48人读过
-
机械工业出版社 (2021)暂无评分 7人读过
-
Packt Publishing - ebooks Account (2017)8.6分 16人读过
-
Packt Publishing (2019)暂无评分 4人读过
以下书单推荐 · · · · · · ( 全部 )
- 深度学习与人工智能 (lyb)
- Python (fountainer)
- T (dhcn)
- AI&ML&DS (石浥子)
- Machine Learning for Beginners (Reed)
谁读这本书? · · · · · ·
二手市场
· · · · · ·
- 在豆瓣转让 有276人想读,手里有一本闲着?
订阅关于Python Machine Learning的评论:
feed: rss 2.0
4 有用 andy wang 2016-10-15 23:41:10
说实话这书没有想象中的好,它的定位是cookbook,对于ML的原理是有些阐述的,但是讲的不深,好多地方就是列出一个公式,让我这种数学渣看起来比较费劲,需要不断的查各种资料,对于400多页的书,也就能写到这种程度了。 还有本书的typo是比较多的。 本书的例子还好,ML的各方面都有涉及,对于入门是合适的。 看完本书我觉得应该读一些理论方面的书,然后可以再速刷一遍,锻炼动手能力。 最后两章还没读完,... 说实话这书没有想象中的好,它的定位是cookbook,对于ML的原理是有些阐述的,但是讲的不深,好多地方就是列出一个公式,让我这种数学渣看起来比较费劲,需要不断的查各种资料,对于400多页的书,也就能写到这种程度了。 还有本书的typo是比较多的。 本书的例子还好,ML的各方面都有涉及,对于入门是合适的。 看完本书我觉得应该读一些理论方面的书,然后可以再速刷一遍,锻炼动手能力。 最后两章还没读完,Deep Learning不好懂啊! (展开)
1 有用 杜_子虚 2017-07-03 09:41:13
最好的一点是书中所用的scikit library是公开的,可以边看边操作。作为一本cookbook,基本没有深究技术理论,对于新手来说十分容易入口。出版于2013年,书中某些code在py2.7里已经不适用(另少量typo),建议cross reference官方manual。
0 有用 不困 2019-02-13 19:37:54
很不错的cookbook
0 有用 Autoz 2019-11-08 12:07:22
错误很多,直接上GitHub上找到勘误和代码,改正后很舒畅,非常入门和实用
0 有用 流年闲草 2015-12-29 11:53:48
工程化相关章节蛮不错的,推荐~